首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tubular array of TiO2 nanotubes on Ti matrix was used as a support for Ag or Cu sputter‐deposited layers intended for surface‐enhanced Raman scattering (SERS) investigations. The composite samples of Ag/TiO2–nanotube/Ti and Cu/TiO2–nanotube/Ti were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) [and scanning Auger microscopy (SAM)] to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured after it had been adsorbed on the TiO2–nanotube/Ti substrates covered with thin Ag or Cu deposit as well as on the bulk electrochemically roughened Ag or Cu reference substrates. It was found that the SERS spectra measured for pyridine adsorbed on the bulk silver substrate were significantly different than the spectra measured on the TiO2–nanotube/Ti substrates covered the Ag layer. The spectra measured for pyridine adsorbed on the Ag/TiO2–nanotube/Ti suggest that on the surface of such a composite substrate there are many Lewis acidic sites. Spectra typical for pyridine adsorbed on acidic sites were observed even after deposition of a relatively thick silver layer (e.g. an Ag layer with an average thickness of 80 nm) on the TiO2–nanotube/Ti support. Our findings suggest that TiO2–nanotube/Ti support is a promising substrate for the preparation of metallic nano‐clusters on a support containing acidic active sites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Here we report on the growth of TiO2 nanotube arrays (TNAs) on Ti foil with laser-drilled microhole arrays (MHAs). The MHAs promoted the adhesion of the TNA film to Ti substrate, which is well suited for flexible dye-sensitized solar cells (DSSCs). The MHA photoanode and TNAs were characterized by SEM, 3D optical profiling, XRD and TEM. For such a flexible MHA photoanode, the TNA-based DSSC was assembled using a platinized conductive glass counter electrode, and a conversion efficiency of 3.45% was achieved under AM 1.5 condition. A flexible TNA-based DSSC was also fabricated using a flexible MHA photoanode combined with a platinized indium tin oxide-polyethylene naphthalate counter electrode, which achieved 2.67% photovoltaic conversion efficiency under simulated AM 1.5 sunlight.  相似文献   

3.
采用致密平整TiO2薄膜作为染料敏化太阳能电池光电极,并研究了HCl处理表面质子化对电池性能的影响. 结果表明,HCl处理后电池的短路电流显著提升,电池的开路电压则有轻微的下降,电池电流提升了31%,而能量转化效率则提升了25%. 这是因为TiO2的表面质子化增强了吸附染料与TiO2间的电学耦合,提高了染料中激发电子向TiO2导带的注入速率. 而电压的下降,一方面是由于质子化会引起TiO2导带能级  相似文献   

4.
《Current Applied Physics》2015,15(8):906-909
To achieve the high efficiency in dye-sensitized solar cells (DSSCs), the interface modification of MoS2 counter electrode (CE)/electrolyte should be carried out. Making the modified MoS2 CE by incorporating TiO2 nanoparticles provides possibilities to enhance electrocatalytic activity. The DSSCs with the MoS2/TiO2 CE show enhanced performance compared with DSSCs with the MoS2 CE. The experimental results revealed that the MoS2/TiO2 nanocomposite influences on the power conversion efficiency by enhancing electrocatalytic activity and increasing the active surface area that serve to increase the short circuit current. This understanding can provide guidance for the development of highly efficient DSSCs with platinum-free CEs.  相似文献   

5.
Dye-sensitized solar cells (DSSCs) were fabricated using TiO2 nanoparticles (NPs), TiO2 nanotube arrays (NTAs), and surface-modified NTAs with a TiCl4 treatment. The photovoltaic efficiencies of the DSSCs using TiO2 NP, NTA, and TiCl4-treated NTA electrodes are 4.25, 4.74, and 7.47 %, respectively. The highest performance was observed with a TiCl4-treated TiO2 NTA photoanode, although in the case of the latter two electrodes, the amounts of N719 dye adsorbed were similar and 68 % of that of the NP electrode. Electrochemical impedance measurements show that the overall resistance, including the charge–transfer resistance, was smaller with NTA morphologies than with NP morphologies. We suggest that a different electron transfer mechanism along the one-dimensional nanostructure of the TiO2 NTAs contributes to the smaller charge–transfer resistance, resulting in a higher short circuit current (J sc), even at lower dye adsorption. Furthermore, the TiCl4-treated NTAs showed even smaller charge–transfer resistance, resulting in the highest J sc value, because the downward shift in the conduction band edge improves the electron injection efficiency from the excited dye into the TiCl4-treated TiO2 electrodes.  相似文献   

6.
The novel TiO2 nanopartilces/nanowires (TNPWs) composite with ZrO2 nanoparticles (ZNPs) shell-coated photoanodes were prepared to fabricate high-performance dye-sensitized solar cell (DSSC) based on different types of electrolytes. Hafnium oxide (HfO2) is a new and efficient blocking layer material applied over the TNPWs-ZNPs core-shell photoanode film. TiO2 nanoparticles (TNPs) and TiO2 nanowires (TNWs) were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). DSSCs were fabricated using the novel photoanodes with an organic sensitizer D149 dye and different types of electrolytes namely liquid electrolyte, ionic liquid electrolyte, solid-state electrolyte, and quasi-solid-state electrolyte. The DSSC-4 made through the novel core-shell photoanode using quasi-solid-state electrolyte showed better photocurrent efficiency (PCE) as compared to the other DSSCs. It has such photocurrent-voltage characteristics: short circuit photocurrent (Jsc)?=?19 mA/cm2, the open circuit voltage (Voc)?=?650 mV, fill factor (FF)?=?65 %, and PCE (η)?=?8.03 %. The improved performance of DSSC-4 is ascribed to the core-shell with blocking layer photoanode could increased electron transport and suppressed recombination of charge carriers at the TNPWs-ZNPs/dye/electrolyte interface.  相似文献   

7.
In this work, we presented a new method which directly acts on the surface of the Ti sheet by mechanical micro-etching using a grating ruling engine. The effect of the pre-pattern on the morphology and growth speed of TiO2 nanostructure formed on the Ti sheet with the traditional anodization method was investigated. A novel wall structure was observed and the growth speed of TiO2 nanotube (NT) was greatly affected by the pre-pattern. The wall structure increases the surface-to-volume ratio of the nanotube arrays. The new method provided the possibility of further optimization of fast growth of TiO2 nanostructure and improving the efficiency of dye-sensitized solar cell (DSSC) and photocatalysis.  相似文献   

8.
Kumari  J.M.K.W.  Senadeera  G.K.R.  Dissanayake  M.A.K.L.  Thotawatthage  C.A. 《Ionics》2017,23(10):2895-2900

The effects of “pre-adsorbed cations” in photoanodes on the performances of dye-sensitized solar cells (DSSCs) were studied using two different size cations (K+ and guanidine cation (G+)). While the DSSCs with optimized K+ ions pre-adsorbed photoanodes showed a maximum efficiency of 7.04%, the DSSCs with G+ ions pre-adsorbed photoanodes showed an efficiency of 6.73%. DSSCs fabricated with conventional photanodes (without pre-cation adsorption) showed an efficiency of 6.21%. Differences in efficiencies are very likely due to the cation pre-adsorption effects and could be due to a higher number of K+ cation adsorption per unit area of TiO2 surface of the photoanode compared to a smaller number of G+ cation adsorption in TiO2, due to their difference in sizes. This pre-cation adsorption technique can be used to improve the overall efficiency of a DSSC by about 14% fold over the conventional photoanodes use in DSSCs, specially using smaller cations.

  相似文献   

9.
建立漂移-扩散模型来模拟敏化电池的电荷分离过程.该模型能够计算在稳态和非稳态条件下光生电子的多步受限扩散及其与电子受体的复合反应.通过对电池的电流-电压曲线的数值模拟,优化了电池的薄膜厚度并获得了最大的光电转换效率.发现膜厚的增加降低了电荷收集效率,但有利于提高电子注入流率,光电流的输出正是受控于这两个因素.复合速率常数严重影响了膜厚优化的结果.较厚的薄膜适合于电子复合被充分抑制的电池,而较薄的薄膜有利于降低快复合电池的电子复合损失.在开路条件下,膜厚的提高会减小电子浓度,在造成光电压的降低的同时会提高电子寿命.  相似文献   

10.
Dense and well-oriented rutile TiO2 nanorod arrays were synthesized on a titanium substrate using the organic compound dibutyltin dilaurate as the oxygen source in the oxidation of Ti at 850 °C. The influence of temperature on the nanostructured TiO2 formation and the effect of the TiO2 structures on their wettability were also investigated. Polycrystalline TiO2 grains were formed at 800 °C; in contrast, TiO2 micro-whiskers were grown on the Ti substrate at 900 °C. The measurement of the water contact angle shows that the wetting property of the TiO2 films strongly depends on their surface structure. The surface of the dense well-oriented nanorod arrays is highly hydrophobic with a water contact angle of 130 °C. This study has demonstrated that the direct oxidation of Ti substrate using an organic oxygen source is a promising method for fabrication of large scale, uniform and well-aligned TiO2 nanorod arrays on titanium substrates. PACS 81.16.-Be; 81.20.ka; 82.4c.Cc; 68.37.Hk  相似文献   

11.
The highly oriented array composed of rutile TiO2 nanorods is synthesized by the hydrothermal method on the SnO:F (FTO) substrate. The hybrid UV detector is fabricated via spin-coating a thin layer of poly (9,9-dihexylfluorene) (PFH) on the array. The device characteristics, including I-V curves under UV illumination and time response are studied. Obvious UV photoconductive effect is observed in the device and the response is fast to the switching on and off UV light illumination, which can be repeated for at least 50 times. The quick enhancement of the current origins from the large contact area between TiO2 nanorods and PFH and the convenient charge transport in TiO2 nanorods.  相似文献   

12.
Hydrothermal process has been employed to synthesize titanium oxide (TiO2) bottle brush. The nanostructured bottle brushes with tetragonal nanorods of ~75 nm diameter have been synthesized by changing the nature of the precursors and hydrothermal processing parameters. The morphological features and structural properties of TiO2 films were investigated by field emission scanning electron microscopy, X-ray diffraction, high-resolution transmission electron spectroscopy, Fourier transform Raman spectroscopy, and X-ray photoelectron spectroscopy. The influence of such nanostructures on the performance of dye-sensitized solar cells (DSSCs) is investigated in detail. The interface and transient properties of these nanorods and bottle brush-based photoanodes in DSSCs were analyzed by electrochemical impedance spectroscopic measurements in order to understand the critical factors contributing to such high power conversion efficiency. Surface area of sample was recorded using Brunauer–Emmett–Teller measurements. It is found that bottle brush provides effective large surface area 89.34 m2 g?1 which is much higher than TiO2 nanorods 63.7 m2 g?1. Such effective surface area can facilitate the effective light harvesting, and hence improves the dye adsorption and the photovoltaic performance of DSSCs, typically in short-circuit photocurrent and power conversion efficiency. A best power conversion efficiency of 6.63 % has been achieved. We believe that the present device performance would have wide interests in dye-sensitized solar cell research.  相似文献   

13.
Dye-sensitized solar cells (DSSCs) based on a novel composite photoanode of TiO2 nanoparticles coating on electrodeposited ZnO nanotube arrays are fabricated and characterized. An efficiency of 3.94 % is achieved for the composite cell, increasing 86.7 % than 2.11 % of the ZnO nanotubes cell. The short-circuit current (J sc) and open-circuit voltage (V oc) are also enhancing 52.9 % and 25.3 %, respectively. The improvements are because of the high surface area of TiO2 nanoparticles, as well as fast electron transport and light scattering effect of ZnO nanotubes.  相似文献   

14.
An increasing energy demand and environmental pollution create a pressing need for clean and sustainable energy solutions. TiO2 semiconductor material is expected to play an important role in helping solve the energy crisis through effective utilization of solar energy based on photovoltaic devices. Dye-sensitized solar cells (DSSCs) are potentially lower cost alternative to inorganic silicon-based photovoltaic cells. In this study, we report on the fabrication of DSSCs from anodic TiO2 nanotubes (NT) powder, produced by rapid breakdown potentiostatic anodization of Ti foil in 0.1 M HClO4 electrolyte, as photoanode. TiO2 NT powders with a typical NT outer diameter of approximately 40 nm, wall thickness of approximately 8–15 nm, and length of about 20–25 μm, have been synthesized. The counter electrode was made by electrodeposition of Pt from an aqueous solution of 5 mM H2PtCl6 onto fluorine-doped tin oxide (FTO) glass substrate. The above front-side illuminated DSSCs were compared with back-side illuminated DSSCs fabricated from anodic TiO2 NTs that were grown on the top of Ti foil as photoanode. The highest cell efficiency was 3.54% under 100 mW/cm2 light intensity (1 sun AM 1.5G light, Jsc = 14.3 mA/cm2, Voc = 0.544 V, FF = 0.455). To the best of our knowledge, this is the first report on the fabrication of DSSC from anodic TiO2 NTs powder. The TiO2/FTO photoanodes were characterized by FE-SEM, XRD, and UV–Visible spectroscopy. The catalytic properties of Pt/FTO counter electrodes have been examined by cyclic voltammetry.  相似文献   

15.
Highly ordered TiO2/Ti nanotube arrays were fabricated by anodic oxidation method in 0.5 wt% HF. Using prepared TiO2/Ti nanotube arrays deposited Ni nanoparticles as substrate, high quality diamond-like carbon nanorods (DLCNRs) were synthesized by a conventional method of chemical vapor deposition at 750 °C in nitrogen atmosphere. DLCNRs were analyzed by filed emission scanning electron microscopy and Raman spectrometer. It is very interesting that DLCNRs possess pagoda shape with the length of 3–10 μm. Raman spectra show two strong peaks about 1332 cm−1 and 1598 cm−1, indicating the formation of diamond-like carbon. The field emission measurements suggest that DLCNRs/TiO2/Ti has excellent field emission properties, a low turn-on field about 3.0 V/μm, no evident decay at 3.4 mA/cm2 in 480 min.  相似文献   

16.
The ZnO nanowire (NW) array/TiO2 nanoparticle (NP) composite photoelectrode with controllable NW aspect ratio has been grown from aqueous solutions for the fabrication of dye-sensitized solar cells (DSSCs), which combines the advantages of the rapid electron transport in ZnO NW array and the high surface area of TiO2 NPs. The results indicate that the composite photoelectrode achieves higher overall photoelectrical conversion efficiency (η) than the ZnO NW alone. As a result, DSSCs based on the ZnO NW array/TiO2 NP composite photoelectrodes get the enhanced photoelectrical conversion efficiency, and the highest η is also achieved by rational tuning the aspect ratio of ZnO NWs. With the proper aspect ratio (ca. 6) of ZnO NW, the ZnO NW array/TiO2 NP composite DSSC exhibits the highest conversion efficiency (5.5 %). It is elucidated by the dye adsorption amount and interfacial electron transport of DSSCs with the ZnO NW array/TiO2 NP composite photoelectrode, which is quantitatively characterized using the UV-Vis absorption spectra and electrochemical impedance spectra. It is evident that the DSSC with the proper aspect ratio of ZnO NW displays the high dye adsorption amount and fastest interfacial electron transfer.  相似文献   

17.
ZnO-coated TiO2 (ZTO) thin films were deposited on ITO substrates by a sol–gel method for application as the work electrode for dye-sensitized solar cells (DSSCs). The IV curve and the incident photon-to-current conversion efficiency (IPCE) value of DSSCs for ZTO thin films were studied and compared with single TiO2 films. The results show that the short-circuit photocurrent (J sc) and open-circuit voltage (V oc) values increased from 3.7 mA/cm2 and 0.68 V for the DSSCs with a single TiO2 film to 4.5 mA/cm2 and 0.72 V, respectively, for the DSSCs with a ZTO thin film. It indicated that the DSSCs with a ZTO thin film contributed to provide an inherent energy barrier that suppressed charge recombination significantly. In addition, the higher IPCE value in the ZTO thin film is attributed to the better charge separation by a fast electron transfer process using two semiconductors with different conduction band edges and energy positions.  相似文献   

18.
《Current Applied Physics》2014,14(6):856-861
TiO2 nanofibers (NFs) were fabricated by an electrospinning process and were used as scattering layers in dye-sensitized solar cells (DSSCs). The NF-coated photoanodes of the DSSCs were prepared with a variety of scattering layer thicknesses. The thickness effect of the scattering layer on the double-layered TiO2 nanoparticle (NP)/TiO2 NF structure was investigated through structural, morphological, and optical measurements. In the double-layered photoanode, the TiO2 NP layer plays a major role in dye adsorption and light transmission, and the TiO2 NF scattering layer improves the absorption of visible light due to the light scattering effects. The scattering effect of TiO2 NFs layer was examined by the incident monochromatic photon-to-electron conversion efficiency (IPCE) and UV–Vis spectrometry. The conversion efficiency for the 12 μm-thick photoanode composed of a 2 μm-thick TiO2 NF layer and 10 μm-thick TiO2 NP layer was higher than that of DSSCs with only TiO2 NPs photoanode by approximately 33%.  相似文献   

19.
In this study TiO2 nanotube arrays were fabricated by potentiostatic anodization of titanium sheet. The X-ray diffraction (XRD) pattern and field emission scanning electron microscopy (FE-SEM) image indicated the TiO2 nanotube arrays were of pure anatase form and highly ordered. The properties of the photo-generated charges in the nanotube arrays were investigated by transient photovoltage (TPV) technique and surface photovoltage (SPV) technique based on lock-in amplifier with dc bias, in comparison with the commercial powder derived film. The separation processes of the photo-induced charges in the system of TiO2 nanotubes on Ti have been demonstrated to be correlated with the incident light intensity, surface trapping states, and the interfacial electric field between Ti and TiO2. The results also show that the highly ordered nanotube film could generate much stronger SPV responses under external electric field than the commercial powder derived film.  相似文献   

20.
The self-organized titania nanotube arrays (NTAs) fabricated by anodisation has gained enormous interest due to its high spatial orientation, excellent charge transfer structure, and large internal surface area; all are crucial properties influencing the absorption and propagation of light. In this study, a composite material, CdSe nanoparticle/TiO2 nanotube arrays (CdSe/TiO2 NTAs) were assembled through the insertion of CdSe nanoparticles onto the anodized TiO2 nanotube arrays via electrochemical deposition. The annealing temperature of CdSe/TiO2 NTAs was varied from 200 to 350 °C and was found to play an important role in controlling the formation of CdSe nanoparticles on TiO2 NTAs. Characterizations of the films were performed by using field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, high resolution transmission electron microscopes, X-ray diffractometry and UV–visible diffuse reflectance spectroscopy. The transient photocurrent was examined in a three-electrode system under halogen illumination by using the prepared film as the photoanode. It was found that the CdSe nanoparticles were susceptible to spread through electrochemical deposition and formed on the nanotubes by annealing in nitrogen atmosphere. The increment in annealing temperature has resulted in greater amount of CdSe loaded onto TiO2 nanotube arrays. Therefore, a suitable annealing temperature can enhance the particle interaction, leading to considerable improvement in PEC performance. The sensitized CdSe/TiO2 NTAs annealed at 250 °C displayed 84 folds improvement in photoconversion efficiency than that of bare TiO2 NTAs counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号