首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Mohamed A. Attia 《Meccanica》2017,52(10):2391-2420
This study investigates the size-dependent quasistatic response of a nonlinear viscoelastic microelectromechanical system (MEMS) under an electric actuation. To have this problem in view, the deformable electrode of the MEMS is modelled using cantilever and doubly-clamped viscoelastic microbeams. The modified couple stress theory in conjunction with Bernoulli–Euler beam theory are used for mathematical modeling of the size-dependent instability of microsystems in the framework of linear viscoelastic theory. Simultaneous effect of electrostatic actuation including fringing field, residual stress, mid-plane stretching and Casimir and van der Waals intermolecular forces are considered in the theoretical model. A single element of the standard linear solid element is used to simulate the viscoelastic behavior. Based on the extended Hamilton’s variational principle, the nonlinear governing integro-differential equation and boundary conditions are derived. Thereafter, a new generalized differential-integral quadrature solution for the nonlinear quasistatic response of electrically actuated viscoelastic micro/nanobeams under two different boundary conditions; doubly-clamped microbridge and clamped-free microcantilever. The developed model is verified and a good agreement is obtained. Finally, a comprehensive study is conducted to investigate the effects of various parameters such as material relaxation time, durable modulus, material length scale parameter, Casimir force, van der Waals force, initial gap and beam length on the pull-in response of viscoelastic microbridges and microcantilevers in the framework of viscoelasticity.  相似文献   

2.
Jin Zhang  Yiming Fu 《Meccanica》2012,47(7):1649-1658
A new beam model is developed for the viscoelastic microbeam based on a modified couple stress model which contains only one material length scale parameter. The governing equations of equilibrium together with initial conditions and boundary conditions are obtained by a combination of the basic equations of modified couple stress theory and Hamilton’s principle. This new beam model is then used for an electrically actuated microbeam-based MEMS structure. The dynamic and quasi-static governing equations of an electrically actuated viscoelastic microbeam are firstly given where the axial force created by the midplane stretching effect is also considered. Galerkin method is used to solve above equation and this method is also validated by the finite element method (FEM) when our model is reduced into an elastic case. The numerical results show that the instantaneous pull-in voltage, durable pull-in voltage and pull-in delay time predicted by this newly developed model is larger (longer) than that predicted by the classical beam model. A comparison between the quasi-static model results and the dynamic model results is also given.  相似文献   

3.
On the basis of the Euler-Bernoulli hypothesis, nonlinear static and dynamic responses of a viscoelastic microbeam under two kinds of electric forces [a purely direct current (DC) and a combined current composed of a DC and an alternating current] are studied. By using Taylor series expansion, a governing equation of nonlinear integro-differential type is derived, and numerical analyses are performed. When a purely DC is applied, there exist an instantaneous pull-in voltage and a durable pull-in voltage of which the physical meanings are also given, whereas under an applied combined current, the effect of the element relaxation coefficient on the dynamic pull-in phenomenon is observed where the largest Lyapunov exponent is taken as a criterion for the dynamic pull-in instability of viscoelastic microbeams.  相似文献   

4.
Based on a distributed-parameter model, the forced vibration of a cantilever pair excited by a sinusoidal base movement is analyzed. Two cantilevers are coupled at their free ends by a linear spring. A nonlinear concentrated magnetic force acts on the tip of one cantilever, serving at the nonlinear boundary condition of the continuous model. The magnetic force is modeled as a fractional function, strongly dependent on the distance between two magnets. Via the method of multiple scales, the primary resonance is analyzed for all modes. A second-order approximate solution and its stability condition are analytically captured. It is revealed that the frequency–response curves are sensitive to the distance between the two magnets. The curve may exhibit the hardening-type, softening-type or linear behavior due to the existence of the quadratic nonlinearity. The outcomes are supported by the numerical simulations very well.  相似文献   

5.
In the present study, the dynamic pull-in instability and free vibration of circular microplates subjected to combined hydrostatic and electrostatic forces are investigated. To take size effects into account, the strain gradient elasticity theory is incorporated into the Kirchhoff plate theory to develop a nonclassical plate model including three internal material length scale parameters. By using Hamilton’s principle, the higher-order governing equation and the corresponding boundary conditions are obtained. Afterward, a generalized differential quadrature (GDQ) method is employed to discritize the governing differential equations along with simply supported and clamped edge supports. To evaluate the pull-in voltage and vibration frequencies of actuated microplates, the hydrostatic-electrostatic actuation is assumed to be calculated by neglecting the fringing field effects and utilizing the parallel plate approximation. Also, a comparison between the pull-in voltages predicted by the strain gradient theory and the degenerated ones is presented. It is revealed that increasing the dimensionless internal length scale parameter or decreasing the applied hydrostatic pressures leads to higher values of the pull-in voltage. Moreover, it is found that the value of pull-in hydrostatic pressure decreases corresponding to higher dimensionless internal length scale parameters and applied voltages.  相似文献   

6.
In this study, the static pull-in instability of nanocantilever beams immersed in a liquid electrolyte is theoretically investigated. In modeling the nanocantilever beam, the effects of van der Waals forces, elastic boundary condition and size dependency are considered. The modified couple stress theory, containing material length scale parameter, is used to interpret the size effect which appears in micro/nanoscale structures. The modified Adomian decomposition (MAD) method is used to gain an approximate analytical expression for the critical pull-in parameters which are essential for the design of micro/nanoactuators. The results show that the beam can deflect upward or downward, based on the values of the non-dimensional parameters. It is found that the size effect greatly influences the beam deflection and is more noticeable for small thicknesses. Neglecting size effect overestimates the deflection of the nanobeam. The findings reveal that the increase of ion concentration increases the pull-in voltage but decreases the pull-in deflection. Furthermore, an increase in ion concentration increases the influence of size-dependent effect on pull-in voltage.  相似文献   

7.
Steady-state periodic responses of nonlinear coupled planar motions are investigated for transporting beams in the supercritical transport speed ranges. The straight equilibrium configuration bifurcates into multiple equilibrium positions in the supercritical regime. The finite-difference schemes are developed to calculate the non-trivial static equilibrium and the steady-state response under simply supported or clamped boundary conditions. The forced vibration is assumed to be spatially uniform and temporally simple harmonic. Based on the long time series, the steady-state transversal amplitudes of nonlinear planar motions are recorded with changing load frequencies. A?resonance exists if the external load frequency approaches the fundamental frequency. The effects of material parameters and vibration amplitude on the resonance responses are investigated. The coupled planar model can be reduced to two nonlinear models on transversal vibrations, an integro-partial?Cdifferential equation and a partial?Cdifferential one. Numerical examples are displayed for the pros and cons between the two transversal models. It is also revealed that the increased axial speed converts the hardening-type behavior into the softening-type one.  相似文献   

8.
Free vibration of circular cylindrical shell with constrained layer damping   总被引:1,自引:0,他引:1  
Free vibration characteristics of circular cylindrical shell with passive constrained layer damping (PCLD) are presented. Wave propagation approach rather than finite element method, transfer matrix method, and Rayleigh-Ritz method is used to solve the problem of vibration of PCLD circular cylindrical shell under a simply supported boundary condition at two ends. The governing equations of motion for the orthotropic cylindrical shell with PCLD are derived on the base of Sanders’ thin shell theory. Numerical results show that the present method is more effective in comparison with other methods. The effects of the thickness of viscoelastic core and constrained layer, the elastic modulus ratio of orthotropic constrained layer, the complex shear modulus of viscoelastic core on frequency parameter, and the loss factor are discussed.  相似文献   

9.
The effect of viscoelasticity on the guided waves propagation in viscoelastic plate has been investigated according to multi-aspect. To this purpose, an extension of the Legendre polynomial method is proposed to formulate the guided waves equation in orthotropic viscoelastic plate composed of carbon–epoxy. The validity of the proposed Legendre polynomial method is illustrated by comparison with available data. The convergence of the method is discussed through a numerical example. The hysteretic and Kelvin–Voigt viscoelastic models are used to integrate the imaginary part of the complex stiffness matrix associated with the viscoelastic plate in this study. Accordingly, both viscoelastic models do not affect on the dispersion curves results. However, appreciable effects are seen in the attenuation curves. Also, the sensitivity of the guided waves propagation caused by variations of elastic and viscoelastic modulus has been studied in detail. Finally, the advantages of the Legendre polynomial method are described.  相似文献   

10.
This paper aims to study the nonlinear-forced vibrations of a viscoelastic cantilever with a piecewise piezoelectric actuator layer on its top surface using the method of Multiple Scales. The governing equation of motion is a second-order nonlinear ordinary differential equation with quadratic and cubic nonlinearities which appear in stiffness, inertia, and damping terms. The nonlinear terms are due to the piezoelectricity, viscoelasticity, and geometry of the system. Forced vibrations of the system are investigated in the cases of primary resonance and non-resonance hard excitation including subharmonic and superharmonic resonances. Analytical expressions for frequency responses are derived, and the effects of different parameters including damping coefficient, thickness to width ratio of the beam, length and position of the piezoelectric layer, density of the beam, and the piezoelectric coefficient on the frequency-response curves are discussed for each case. It is shown that in all these cases, the response of the system follows a softening behavior due to the existence of the piezoelectric layer. The piezoelectric layer provides an effective tool for active control of vibration. In addition, the effect of the viscoelasticity of the beam on passive control of amplitude of vibration is illustrated.  相似文献   

11.
This paper aims to study the effect of externally applied longitudinal magnetic field on the transverse vibration of viscoelastic double-walled carbon nanotubes(visco-DWCNTs)embedded in a viscoelastic medium. The analyses are carried out based on the nonlocal viscoelastic model and Euler-Bernoulli beam theory. Governing equations are derived for the vibration of the embedded visco-DWCNT subjected to a magnetic field, where the Lorentz magnetic force,the surrounding viscoelastic medium, the intertube van der Waals forces and viscoelasticity of the DWCNT are taken into consideration. In this study, the transfer function method is employed to solve the governing equations, which enables one to obtain the natural frequencies and the corresponding mode shapes in closed form for the DWCNTs with arbitrary boundary conditions.Here the developed mechanics model is first compared with the existing techniques available in the literature in a few particular cases, where excellent agreement is achieved. The validation of the model is followed by a detailed parametric study of the effects of longitudinal magnetic field,nonlocal parameter, boundary conditions, structural damping coefficient and aspect ratio of the DWCNTs on their vibration. The study demonstrates the efficiency of the present technique designed for vibration analysis of a complicated multi-physics system comprising DWCNTs, the viscoelastic medium and a magnetic field in longitudinal direction.  相似文献   

12.
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell–Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.  相似文献   

13.
超磁致伸缩换能器系统动力学特性分析   总被引:1,自引:0,他引:1  
根据第一压磁理论建立超磁致伸缩换能器系统含有平方、立方项非线性动力学模型,利用非线性振动近似解析方法对换能器系统进行分析,揭示了换能器系统非线性特性。利用基于MAT-LAB/Simulink的系统仿真理论,建立换能器系统动态仿真模型,发现换能器系统在一定参数下存在着混沌现象。通过数值模拟的方法对换能器系统做深入的理论分析,得出系统在不同参数下存在着倍周期、倒倍周期分岔等复杂非线性现象。本文的分析结果表明,超磁致伸缩材料的弹性模量、压磁系数、相对磁导率和系统阻尼系数等参数是超磁致伸缩换能器系统动力学特性的主要影响因素。  相似文献   

14.
张能辉  程昌钧 《力学季刊》2001,22(1):134-137
本文以位移为基本未知量,利用非线性粘弹性力学中的Leaderman本构关系和线性几何假设,建立了非线性粘弹性平面问题的数学模型;在粘弹性泊松比为常数的情况下,利用Titchmarsh定理和Laplace变换法证明了非线性粘弹性平面问题与非线性弹性平面问题之间存在着某些对应关系,对应关系为粘弹性问题的求解提供了一种新的思路,利用这些关系可直接从相应弹性问题获得粘弹性平面问题的部分响应,与传统的时域有限差分法相比,计算时间明显缩短,另外,对应关系也揭示了粘弹性结构的失记效应,即结构的部分响应仅与外部输入的现时值有关,而与其历史无关。  相似文献   

15.
The onset of double diffusive convection in a viscoelastic fluid layer is studied using a linear and a weak nonlinear stability analyses. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. There is a competition between the processes of thermal diffusion, solute diffusion and viscoelasticity that causes the convection to set in through oscillatory mode rather than stationary. The effect of Deborah number, retardation parameter, solutal Rayleigh number, Prandtl number, Lewis number on the stability of the system is investigated. It is shown that the critical frequency increases with Deborah number and solutal Rayleigh number while it decreases with retardation parameter and Lewis number. The nonlinear theory based on the truncated representation of Fourier series method is used to find the heat and mass transfers. The transient behaviour of the Nusselt number and Sherwood number is investigated by solving the finite amplitude equations using Runge-Kutta method. The effect of viscoelastic parameters on heat and mass transfer is brought out.  相似文献   

16.
This paper investigates analytically and numerically the effect of initial offset imperfection on the mechanical behaviors of microbeam-based resonators. Symmetry breaking of DC actuation, due to different initial offset distances of microbeam to lower and upper electrodes, is concerned. For qualitative analysis, time-varying capacitors are introduced and a lumped parameter model, considering nonlinear electrostatic force and midplane stretching of microbeam, is adopted to examine the system statics and dynamics. The Method of Multiple Scales (MMS) is applied to determine the primary resonance solution under small vibration assumption. Meanwhile, the Finite Difference Method (FDM) combined with Floquet theory is utilized to generate frequency response curves for medium- and large-amplitude vibration simulations. Static bifurcation, phase portrait and Hamiltonian function are firstly investigated to examine the system inherent behaviors. Besides, basins of attraction are briefly depicted to grasp the effects of initial offset and AC excitation on the system global dynamics. Then, variation of equivalent natural frequency versus DC voltage is analyzed. Results show that initial offset may induce complex frequency rebound phenomenon as well as a separate frequency branch under secondary pull-in condition. In what follows, emergences of softening, linear and hardening vibration are classified through discussing a key parameter obtained from the frequency response equation. New linear behavior induced by initial offset imperfection is found, which exhibits much higher sensitivity to DC voltage. Medium- and large-amplitude in-well motions are also investigated, indicating the existence of alternations of softening and hardening behaviors. Finally, lumped parameters are deduced via Galerkin procedure, and case studies are provided to illustrate the effectiveness of the whole analysis.  相似文献   

17.
The nonlinear vibration characteristics of the piezoelectric circular cylindrical nanoshells resting on an elastic foundation are analyzed. The small scale effect and thermo-electro-mechanical loading are taken into account. Based on the nonlocal elasticity theory and Donnell's nonlinear shell theory, the nonlinear governing equations and the corresponding boundary conditions are derived by employing Hamilton's principle. Then,the Galerkin method is used to transform the governing equations into a set of ordinary differential equations, and subsequently, the multiple-scale method is used to obtain an approximate analytical solution. Finally, an extensive parametric study is conducted to examine the effects of the nonlocal parameter, the external electric potential, the temperature rise, and the Winkler-Pasternak foundation parameters on the nonlinear vibration characteristics of circular cylindrical piezoelectric nanoshells.  相似文献   

18.
基于应变梯度弹性理论,研究了静电激励MEMS微结构吸合电压的尺寸效应。利用最小势能原理分别推导出含尺寸效应的一维梁模型和二维板模型的高阶控制方程。采用广义微分求积法和拟弧长算法对控制方程进行了数值求解。结果表明,随着结构尺寸的降低,新模型所预测的归一化的吸合电压呈非线性增长,表现出尺寸效应(特别是当结构尺寸与内禀常数在同一数量级时尺寸效应更加强烈);而相应的经典理论模型并不能预测此尺寸效应。两种新模型可视为相应经典理论的推广。本文有助于研究MEMS微结构的特性并对微结构的设计有潜在的应用价值。  相似文献   

19.
In this paper, we examine the characteristics of elastic wave propagation in viscoelastic porous media, which contain simultaneously both the Biot-flow and the squirt-flow mechanisms (BISQ). The frequency-domain Green’s functions for viscoelastic BISQ media are then derived based on the classic potential function methods. Our numerical results show that S-waves are only affected by viscoelasticity, but not by squirt-flows. However, the phase velocity and attenuation of fast P-waves are seriously influenced by both viscoelasticity and squirt-flows; and there exist two peaks in the attenuation-frequency variations of fast P-waves. In the low-frequency range, the squirt-flow characteristic length, not viscoelasticity, affects the phase velocity of slow P-waves, whereas it is opposite in the high-frequency range. As to the contribution of potential functions of two types of compressional waves to the Green’s function, the squirt-flow length has a small effect, and the effects of viscoelastic parameter are mainly in the higher frequency range.  相似文献   

20.
In this study, the forced vibration of a curved pipe conveying fluid resting on a nonlinear elastic foundation is considered. The governing equations for the pipe system are formed with the consideration of viscoelastic material, nonlinearity of foundation, external excitation, and extensibility of centre line. Equations governing the in-plane vibration are solved first by the Galerkin method to obtain the static in-plane equilibrium configuration. The out-of-plane vibration is simplified into a constant coefficient gyroscopic system. Subsequently, the method of multiple scales (MMS) is developed to investigate external first and second primary resonances of the out-of-plane vibration in the presence of three-to-one internal resonance between the first two modes. Modulation equations are formed to obtain the steady state solutions. A parametric study is carried out for the first primary resonance. The effects of damping, nonlinear stiffness of the foundation, internal resonance detuning parameter, and the magnitude of the external excitation are investigated through frequency response curves and force response curves. The characteristics of the single mode response and the relationship between single and two mode steady state solutions are revealed for the second primary resonance. The stability analysis is carried out for these plots. Finally, the approximately analytical results are confirmed by the numerical integrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号