首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic and acyclic peptides with sequences derived from metallochaperone binding sites, but differing at position 2, were analyzed for their inhibitory reactivity towards cellular ROS (reactive oxygen species) formation and catalytic activity towards oxidation with H2O2, in comparison with three commercial drugs clinically employed in chelation therapy for Wilson's disease. Acyclic peptides were more effective inhibitors than the cyclic ones, with one leading peptide with threonine at position 2 systematically showing the highest efficiency in reducing cellular ROS levels and in inhibiting Cu oxidation. This peptide was more effective than all commercial drugs in all aspects analyzed, and showed no toxicity towards human colon HT‐29 cancer cells at concentrations 10–100 times higher than the IC50 of the commercial drugs, corroborating its high medicinal potential.  相似文献   

2.
In this account, the reactive oxygen species (ROS) in photodynamic therapy (PDT) were deliberately reviewed. First, the specific definition of ROS and PDT were readily clarified. Afterward, this review focuses on the fundamental principles and applications of PDT. Due to strong oxidation ability of radicals (e.g., •OH and O2•-) and non-radical (e.g., 1O2 and H2O2), these ROS would attack the in vitro and in vivo tumor cells, thus achieving the goal of cancer treatment. Then, ROS in PDT for cancer treatment was thoroughly reviewed, including the mechanism and photosensitizer (PS) selection (i.e., nanomaterials). Ultimately, emphasis was made on the challenges, research gap, and prospects of ROS in cancer treatment and critically discussed. Hopefully, this review can offer detailed theoretical guidance for the researchers who participate in the study regarding ROS in PDT.  相似文献   

3.
《中国化学快报》2020,31(12):3149-3152
Considering that hydrogen peroxide (H2O2) plays significant roles in oxidative stress, the cellular signal transduction and essential biological process regulation, the detection and imaging of H2O2 in living systems undertakes critical responsibility. Herein, we have developed a novel two-photon fluorescence turn on probe, named as Pyp-B for mitochondria H2O2 detection in living systems. Selectivity studies show that probe Pyp-B exhibit highly sensitive response toward H2O2 than other reactive oxygen species (ROS) and reactive nitrogen species (RNS) as well as biologically relevant species. The fluorescence colocalization studies demonstrate that the probe can localize in the mitochondria solely. Furthermore, as a bio-compatibility molecule, the highly selective and sensitive of fluorescence probe Pyp-B have been confirmed by its cell imaging application of H2O2 in living A549 cells and zebrafishes under the physiological conditions.  相似文献   

4.
Reactive oxygen species (ROS) have captured the interest of many researchers in the chemical, biological, and medical fields since they are thought to be associated with various pathological conditions. Fluorescent probes for the detection of ROS are promising tools with which to enhance our understanding of the physiological roles of ROS, because they provide spatial and temporal information about target biomolecules in in vivo cellular systems. ROS probes, designed to detect specific ROS with a high selectivity, would be desirable, since it is now becoming clear that each ROS has its own unique physiological activity. However, dihydro-compounds such as 2′,7′-dichlorodihydrofluorescein (DCFH), which have traditionally been used for detecting ROS, tend to react with a wide variety of ROS and are not completely photostable. Some attractive fluorescent probes that exhibit a high degree of selectivity toward specific ROS have recently been reported, and these selective probes are expected to have great potential for elucidating unknown physiological mechanisms associated with their target ROS. This review focuses on the design, detection mechanism, and performance of fluorescent probes for the detection of singlet oxygen (1O2), hydrogen peroxide (H2O2), hydroxyl radicals (.OH), or superoxide anion (O2 −.), a field in which remarkable progress has been achieved in the last few years.  相似文献   

5.
Overproduction of superoxide anion (O2.−), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.− to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2S). Termed SOPD-NAC , this persulfide donor reacts specifically with O2.−, decomposing to generate N-acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self-assembling peptide (Bz-CFFE-NH2) to make a superoxide-responsive, persulfide-donating peptide ( SOPD-Pep ). Both SOPD-NAC and SOPD-Pep delivered persulfides/H2S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD-Pep mitigated toxicity induced by phorbol 12-myristate 13-acetate (PMA) more effectively than SOPD-NAC and several control compounds, including common H2S donors.  相似文献   

6.
Overproduction of superoxide anion (O2.?), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.? to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2S). Termed SOPD‐NAC , this persulfide donor reacts specifically with O2.?, decomposing to generate N‐acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self‐assembling peptide (Bz‐CFFE‐NH2) to make a superoxide‐responsive, persulfide‐donating peptide ( SOPD‐Pep ). Both SOPD‐NAC and SOPD‐Pep delivered persulfides/H2S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD‐Pep mitigated toxicity induced by phorbol 12‐myristate 13‐acetate (PMA) more effectively than SOPD‐NAC and several control compounds, including common H2S donors.  相似文献   

7.
Free radicals with reactive chemical properties can fight tumors without causing drug resistance. Reactive oxygen species (ROS) has been widely used for cancer treatment, but regrettably, the common O2 and H2O2 deficiency in tumors sets a severe barrier for sufficient ROS production, leading to unsatisfactory anticancer outcomes. Here, we construct a chlorine radical (.Cl) nano-generator with SiO2-coated upconversion nanoparticles (UCNPs) on the inside and Ag0/AgCl hetero-dots on the outside. Upon near-infrared (NIR) light irradiation, the short-wavelength emission UCNP catalyzes .Cl generation from Ag0/AgCl with no dependence on O2/H2O2. .Cl with strong oxidizing capacity and nucleophilicity can attack biomolecules in cancer cells more effectively than ROS. This .Cl stress treatment will no doubt broaden the family of oxidative stress-induced antitumor strategies by using non-oxygen free radicals, which is significant in the development of new anticancer agents.  相似文献   

8.
Dynamic changes in reactive oxygen species (ROS) of Taxus cuspidata cells immobilized on polyurethane foam were investigated and the relation between ROS content and taxol production was discussed. Immobilization shortened the lag period of cell growth and moderately increased H2O2 and O2 −• contents inside the microenvironment within the first 15 d. After 20 d, excessive production of H2O2 and O2 −• was observed accompanied by marked increases in membrane lipid peroxidation and cell membrane permeability. The taxol content of immobilized cells was fourfold that of suspended cells at d 35. The addition of exogenous H2O2 barely affected malondialdehyde content and cell membrane permeability but led to an obvious accumulation of taxol. It is inferred that the intracellular and extracellular H2O2 inside the microenvironment might be one factor promoting taxol biosynthesis under the immobilization stress.  相似文献   

9.
10.
Neutrophils can responsively release reactive oxygen species (ROS) to actively combat infections by exogenous stimulus and cascade enzyme catalyzed bio-oxidation. A supramolecular nanogel is now used as an artificial neutrophil by enzymatic interfacial self-assembly of peptides (Fmoc-Tyr(H2PO3)-OH) with magnetic nanoparticles (MNPs) and electrostatic loading of chloroperoxidase (CPO). The MNPs within the nanogel can elevate H2O2 levels in cancer cells under programmed alternating magnetic field (AMF) similar to the neutrophil activator, and the loaded CPO within protective peptides nanolayer converts the H2O2 into singlet oxygen (1O2) in a sustained manner for neutrophil-inspired tumor therapy. As a proof of concept study, both the H2O2 and 1O2 in cancer cells increase stepwise under a programmed alternating magnetic field. An active enzyme dynamic therapy by magnetically stimulated oxygen stress and sustained enzyme bio-oxidation is thus shown with studies on both cells and animals.  相似文献   

11.
A novel N‐borylbenzyloxycarbonyl‐3,7‐dihydroxyphenoxazine fluorescent probe (NBCD) for detecting H2O2 in living cells is described. The probe could achieve high selectivity for detecting H2O2 over other biological reactive oxygen species (ROS). In addition, upon addition of H2O2, NBCD exhibited color change from colorless to pink, which makes it a “naked‐eye” probe for H2O2 detection. NBCD could not only be used to detect enzymatically generated H2O2 but also to detect H2O2 in living systems by using fluorescence spectroscopy, with a detection limit of 2 μm . Importantly, NBCD enabled the visualization of epidermal growth factor (EGF)‐stimulated H2O2 generation inside the cells.  相似文献   

12.
The present study is designed to investigate the neuroprotective effect of a kind of phlorotannins, diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae against hydrogen peroxide (H2O2)-induced oxidative stress in murine hippocampal neuronal cells, HT22. H2O2 treatment induced neurotoxicity, whereas DPHC prevented cells from H2O2-induced damage then restoring cell viability was significantly increased. DPHC slightly reduced the expression of Bax induced by H2O2 but recovered the expression of Bcl-xL as well as caspase-9 and -3 mediated PARP cleavage by H2O2. Intracellular reactive oxygen species (ROS) and lipid peroxidation was overproduced as the result of the addition of H2O2; however, these ROS generations and lipid peroxidation were effectively inhibited by addition of DPHC in a dose-dependent manner. Moreover, DPHC suppressed the elevation of H2O2-induced Ca2+ release. These findings indicate that DPHC has neuroprotective effects against H2O2-induced damage in neuronal cells, and that an inhibitory effect on ROS production may contribute to the underlying mechanisms.  相似文献   

13.
The two signaling molecules H2S and H2O2 play key roles in maintaining intracellular redox homeostasis. The biological relationship between H2O2 and H2S remains largely unknown in redox biology. In this study, we rationally designed and synthesized single‐ and dual‐response fluorescent probes for detecting both H2O2 and H2S in living cells. The dual‐response probe was shown to be capable of mono‐ and dual‐detection of H2O2 and H2S selectively and sensitively. Detailed bioimaging studies based on the probes revealed that both exogenous and endogenous H2O2 could induce H2S biogenesis in living cells. By using gene‐knockdown techniques with bioimaging, the H2S biogenesis was found to be majorly cystathionine β‐synthase (CBS)‐dependent. Our finding shows the first direct evidence on the biological communication between H2O2 (ROS) and H2S (RSS) in vivo.  相似文献   

14.
Reactive sulfur species, such as hydrogen sulfide, persulfides, and polysulfides, have recently emerged as key signaling molecules and important physiological mediators within mammalian systems. To better assess the therapeutic potential of their exogenous administration, we report on the development of a unique hydrogen peroxide (H2O2)-sensing motif and its capacity for providing cellular protection against oxidative stress while serving as a reactive oxygen species (ROS)-activated persulfide donor. With the strategic implementation of a gem-dimethyl group to promote both stability and cyclization, we found the initial rate of payload release from this newly derived scaffold to be directly proportional to the concentration of H2O2 and to proceed via an unprecedented pathway that avoids the production of electrophilic byproducts, a severe limitation that has plagued the physiological application of previous designs.  相似文献   

15.
Neutrophils can responsively release reactive oxygen species (ROS) to actively combat infections by exogenous stimulus and cascade enzyme catalyzed bio‐oxidation. A supramolecular nanogel is now used as an artificial neutrophil by enzymatic interfacial self‐assembly of peptides (Fmoc‐Tyr(H2PO3)‐OH) with magnetic nanoparticles (MNPs) and electrostatic loading of chloroperoxidase (CPO). The MNPs within the nanogel can elevate H2O2 levels in cancer cells under programmed alternating magnetic field (AMF) similar to the neutrophil activator, and the loaded CPO within protective peptides nanolayer converts the H2O2 into singlet oxygen (1O2) in a sustained manner for neutrophil‐inspired tumor therapy. As a proof of concept study, both the H2O2 and 1O2 in cancer cells increase stepwise under a programmed alternating magnetic field. An active enzyme dynamic therapy by magnetically stimulated oxygen stress and sustained enzyme bio‐oxidation is thus shown with studies on both cells and animals.  相似文献   

16.
Oxidative stress plays a crucial role in the development of airway diseases. Recently, hydrogen (H2) gas has been explored for its antioxidant properties. This study investigated the role of H2 gas in oxidative stress-induced alveolar and bronchial airway injury, where A549 and NCI-H292 cells were stimulated with hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) in vitro. Results show that time-dependent administration of 2% H2 gas recovered the cells from oxidative stress. Various indicators including reactive oxygen species (ROS), nitric oxide (NO), antioxidant enzymes (catalase, glutathione peroxidase), intracellular calcium, and mitogen-activated protein kinase (MAPK) signaling pathway were examined to analyze the redox profile. The viability of A549 and NCI-H292 cells and the activity of antioxidant enzymes were reduced following induction by H2O2 and LPS but were later recovered using H2 gas. Additionally, the levels of oxidative stress markers, including ROS and NO, were elevated upon induction but were attenuated after treatment with H2 gas. Furthermore, H2 gas suppressed oxidative stress-induced MAPK activation and maintained calcium homeostasis. This study suggests that H2 gas can rescue airway epithelial cells from H2O2 and LPS-induced oxidative stress and may be a potential intervention for airway diseases.  相似文献   

17.
Inducing high levels of reactive oxygen species (ROS) inside tumor cells is a cancer therapy method termed chemodynamic therapy (CDT). Relying on delivery of Fenton reaction promoters such as Fe2+, CDT takes advantage of overproduced ROS in the tumor microenvironment. We developed a peptide-H2S donor conjugate, complexed with Fe2+, termed AAN - PTC – Fe2+ . The AAN tripeptide was specifically cleaved by legumain, an enzyme overexpressed in glioma cells, to release carbonyl sulfide (COS). Hydrolysis of COS by carbonic anhydrase formed H2S, an inhibitor of catalase, an enzyme that detoxifies H2O2. Fe2+ and H2S together increased intracellular ROS levels and decreased viability in C6 glioma cells compared with controls lacking either Fe2+, the AAN sequence, or the ability to generate H2S. AAN - PTC – Fe2+ performed better than temezolimide while exhibiting no cytotoxicity toward H9C2 cardiomyocytes. This study provides an H2S-amplified, enzyme-responsive platform for synergistic cancer treatment.  相似文献   

18.
Facile evaluation of oxygen reduction reaction (ORR) kinetics for electrocatalysts is critical for sustainable fuel-cell development and industrial H2O2 production. Despite great success in ORR studies using mainstream strategies, such as the membrane electrode assembly, rotation electrodes, and advanced surface-sensitive spectroscopy, the time and spatial distribution of reactive oxygen species (ROS) intermediates in the diffusion layer remain unknown. Using time-dependent electrochemiluminescence (Td-ECL), we report an intermediate-oriented method for ORR kinetics analysis. Owing to multiple ultrasensitive stoichiometric reactions between ROS and the ECL emitter, except for electron transfer numbers and rate constants, the potential-dependent time and spatial distribution of ROS were successfully obtained for the first time. Such exclusively uncovered information would guide the development of electrocatalysts for fuel cells and H2O2 production with maximized activity and durability.  相似文献   

19.
Flavonols (FLA) from Vaccinium macrocarpon (V. macrocarpon) were identified using high-performance liquid chromatography coupled with mass spectrometry detection. Nanoparticles were prepared using highly crosslinked keratin (KER) from human hair and silver and entrapped with flavonols [KER + FLA + AgNPs]. Nanocomposites were characterized using UV–Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction, zeta potential, and dynamic light scattering, and release profiles. The interactions between the capping agent and the silver core have been investigated using FTIR spectroscopy·H2O2 is a source of Reactive Oxygen Species (ROS) and acts as an activator of oxidative stress affecting NS-1 cells, and the protective effect of the nanocomposites were evaluated against H2O2-induced pancreatic β-cell damage. LC-MS/MS and HPLC analyses revealed the presence of 12 flavonols in V. macrocarpon plant extract. The cell apoptosis and proliferation, were evaluated by Hoechst 33342 staining, flow cytometry and Cell Counting Kit-8 respectively. Preincubation of the NS-1 cells with 250 µg/mL of H2O2 induced oxidative stress conditions that show pancreatic β-cell dysfunction, including ROS, cell death, mitochondrial function, antioxidant enzymes, and lipid peroxidation. Nevertheless, pretreatment with FLA and [KER + FLA + AgNPs] prevented mitochondria disruption, maintained cellular ATP levels, inhibited LDH release, intracellular ROS production, decreased lipid peroxidation, increased expression of antioxidant enzymes (CAT, SOD, and GPx) and GSH levels. These results indicate that nanocomposites could protect rat INS-1 pancreatic β-cell from H2O2-induced oxidative damage, apoptosis and proliferation by reducing the production of intracellular reactive oxygen species.  相似文献   

20.
In this paper, we discuss the synthesis and electrochemical properties of a new material based on iron oxide nanoparticles stabilized with poly(diallyldimethylammonium chloride) (PDAC); this material can be used as a biomimetic cathode material for the reduction of H2O2 in biofuel cells. A metastable phase of iron oxide and iron hydroxide nanoparticles (PDAC–FeOOH/Fe2O3-NPs) was synthesized through a single procedure. On the basis of the Stokes–Einstein equation, colloidal particles (diameter: 20 nm) diffused at a considerably slow rate (D = 0.9 × 10? 11 m s? 1) as compared to conventional molecular redox systems. The quasi-reversible electrochemical process was attributed to the oxidation and reduction of Fe3+/Fe2+ from PDAC–FeOOH/Fe2O3-NPs; in a manner similar to redox enzymes, it acted as a pseudo-prosthetic group. Further, PDAC–FeOOH/Fe2O3-NPs was observed to have high electrocatalytic activity for H2O2 reduction along with a significant overpotential shift, ΔE = 0.68 V from ? 0.29 to 0.39 V, in the presence and absence of PDAC–FeOOH/Fe2O3-NPs. The abovementioned iron oxide nanoparticles are very promising as candidates for further research on biomimetic biofuel cells, suggesting two applications: the preparation of modified electrodes for direct use as cathodes and use as a supporting electrolyte together with H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号