首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The local structures and spin Hamiltonian parameters (g factors and the hyperfine structure constants) of the Rh4+(4d5) and Ir4+(5d5) centers in rhombohedral BaTiO3 are theoretically investigated from the formulas of these parameters for a nd5 (n = 4 and 5) ion with low spin (S = 1/2) in a trigonally distorted octahedron. From the calculations, the impurity ions are found not to occupy exactly the host Ti4+ site in BaTiO3 but to suffer a slight inward shift (0.13 Å) towards the center of the oxygen octahedron along the C3 axis, yielding much smaller trigonal distortion as compared with that of the host Ti4+ site. The theoretical spin Hamiltonian parameters based on the above impurity axial shifts are in good agreement with the observed values.  相似文献   

2.
The adsorption of Saccharomyces cerevisiae mandelated dehydrogenase (SCMD) protein on the surface-modified magnetic nanoparticles coated with chitosan was studied in a batch adsorption system. Functionalization of surface-modified magnetic particles was performed by the covalent binding of chitosan onto the surface of magnetic Fe3O4 nanoparticles. Characterization of these particles was carried out using FTIR spectra, transmission electron micrography (TEM), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). Magnetic measurement revealed that the magnetic Fe3O4–chitosan nanoparticles were superparamagnetic and the saturation magnetization was about 37.3 emu g−1. The adsorption capacities and rates of SCMD protein onto the magnetic Fe3O4–chitosan nanoparticles were evaluated. The adsorption capacity was influenced by pH, and it reached a maximum value around pH 8.0. The adsorption capacity increased with the increase in temperature. The adsorption isothermal data could be well interpreted by the Freundlich isotherm model. The kinetic experimental data properly correlated with the first-order kinetic model, which indicated that the reaction is the adsorption control step. The apparent adsorption activation energy was 27.62 kJ mol−1 and the first-order constant for SCMD protein was 0.01254 min−1 at 293 K.  相似文献   

3.
LiFe0.5Ti1.5O4 was synthesized by solid-state reaction carried out at 900 °C in flowing argon atmosphere, followed by rapid quenching of the reaction product to room temperature. The compound has been characterized by X-ray powder diffraction (XRD) and 57Fe Mössbauer effect spectroscopy (MES). It crystallizes in the space group P4332, a = 8.4048(1) Å. Results from Rietveld structural refinement indicated 1:3 cation ordering on the octahedral sites: Li occupies the octahedral (4b) sites, Ti occupies the octahedral (12d) sites, while the tetrahedral (8c) sites have mixed (Fe/Li) occupancy. A small, about 5%, inversion of Fe on the (4b) sites has been detected. The MES data is consistent with cation distribution and oxidation state of Fe, determined from the structural data.The title compound is thermally unstable in air atmosphere. At 800 °C it transforms to a mixture of two Fe3+ containing phases – a face centred cubic spinel Li(1+y)/2Fe(5−3y)/2TiyO4 and a Li(z−1)/2Fe(7−3z)/2TizO5 – pseudobrookite. The major product of thermal treatment at 1000 °C is a ramsdellite type lithium titanium iron(III) oxide, accompanied by traces of rutile and pseudobrookite.  相似文献   

4.
In this work, ionic liquid modified Fe3O4@dopamine/graphene oxide/β-cyclodextrin (ILs-Fe3O4@DA/GO/β-CD) was used as supporting material to synthesize surface molecularly imprinted polymer (SMIP) which then was introduced into chemiluminescence (CL) to achieve an ultrasensitive and selective biosensor for determination of lysozyme (Lys). ILs and β-CD was applied to provide multiple binding sites to prepare Lys SMIP and Fe3O4@DA was designed to make the product separate easily and prevent the aggregation of GO which could improve absorption capacity for its large specific surface area. The ILs-Fe3O4@DA/GO/β-CD-SMIP showed high adsorption capacity (Q = 101 mg/g) to Lys in the adsorption isotherm assays. The adsorption equilibrium was reached within 10 min for all the concentrations, attributing to the binding sites situated exclusively at the surface, and the adsorption model followed Langmuir isotherm. Under the suitable CL conditions, the proposed biosensor could response Lys linearly in the range of 1.0 × 10−9–8.0 × 10−8 mg/mL with a detection limit of 3.0 × 10−10 mg/mL. When used in practical samples in determination of Lys, the efficient biosensor exhibited excellent result with the recoveries ranging from 94% to 112%.  相似文献   

5.
Subsolidus phase relations in the CuOx-TiO2-Nb2O5 system were determined at 935 °C. The phase diagram contains one new phase, Cu3.21Ti1.16Nb2.63O12 (CTNO) and one rutile-structured solid solution series, Ti1−3xCuxNb2xO2: 0<x<0.2335 (35). The crystal structure of CTNO is similar to that of CaCu3Ti4O12 (CCTO) with square planar Cu2+ but with A site vacancies and a disordered mixture of Cu+, Ti4+ and Nb5+ on the octahedral sites. It is a modest semiconductor with relative permittivity ∼63 and displays non-Arrhenius conductivity behavior that is essentially temperature-independent at the lowest temperatures.  相似文献   

6.
Magnetic CoFe2O4-functionalized graphene sheets (CoFe2O4-FGS) nanocomposites have been synthesized by hydrothermal treatment of inorganic salts and thermal exfoliated graphene sheets. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that cobalt ferrite nanoparticles with sizes of 10-40 nm are well dispersed on graphene sheets. OH was recognized as a tie to integrate the inorganic salts with the graphene sheets, which made reaction started and developed on the surface of graphene sheets and formed cobalt ferrite nanoparticles on graphene sheets. The adsorption kinetics investigation revealed that the adsorption of methyl orange from aqueous solution over the as-prepared CoFe2O4-FGS nanocomposites followed pseudo-second-order kinetic model and the adsorption capacity was examined as high as 71.54 mg g−1. The combination of the superior adsorption of FGS and the magnetic properties of CoFe2O4 nanoparticles can be used as a powerful separation tool to deal with water pollution.  相似文献   

7.
Host lattice Ba3Si5O13−δNδ oxonitridosilicates have been synthesized by the traditional solid state reaction method. The lattice structure is based on layers of vertex-linked SiO4 tetrahedrons and Ba2+ ions, where each Ba2+ ion is coordinated by eight oxygen atoms forming distorted square antiprisms. Under an excitation wavelength of 365 nm, Ba3Si5O13−δNδ:Eu2+ and Ba3Si5O13−δNδ:Eu2+,Ce3+ show broad emission bands from about 400-620 nm, with maxima at about 480 nm and half-peak width of around 130 nm. The emission intensity is strongly enhanced by co-doping Ce3+ ions into the Ba3Si5O13−δNδ:Eu2+ phosphor, which could be explained by energy transfer. The excitation band from the near UV to the blue light region confirms the possibility that Ba3Si5O13−δNδ:Eu2+, Ce3+ could be used as a phosphor for white LEDs.  相似文献   

8.
Effect of surface fluorination and conductive additives on the charge/discharge behavior of lithium titanate (Li4/3Ti5/3O4) has been investigated using F2 gas and vapor grown carbon fiber (VGCF). Surface fluorination of Li4/3Ti5/3O4 was made using F2 gas (3 × 104 Pa) at 25-150 °C for 2 min. Charge capacities of Li4/3Ti5/3O4 samples fluorinated at 70 °C and 100 °C were larger than those for original sample at high current densities of 300 and 600 mA/g. Optimum fluorination temperatures of Li4/3Ti5/3O4 were 70 °C and 100 °C. Fibrous VGCF with a large surface area (17.7 m2/g) increased the utilization of available capacity of Li4/3Ti5/3O4 probably because it provided the better electrical contact than acetylene black (AB) between Li4/3Ti5/3O4 particles and nickel current collector.  相似文献   

9.
Li4Ti5O12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li4Ti5O12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s−1, indicating that Li4Ti5O12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li+ ion was estimated to be 6.8×10−11 cm2 s−1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li+ ions become more mobile at 1.55 V vs. Li/Li+, corresponding to a two-phase region, and the chemical diffusion coefficients of Li+ ion ranged from 10−10 to 10−12 cm2 s−1 at various potentials. The chemical diffusion coefficients of Li+ ion in Li4Ti5O12 were also estimated from PITT. They were in a range of 10−11-10−12 cm2 s−1.  相似文献   

10.
The room temperature structures of the five layer Aurivillius phases A2Bi4Ti5O18 (A=Ca, Sr, Ba and Pb) have been refined from powder neutron diffraction data using the Rietveld method. The structures consist of [Bi2O2]2+ layers interleaved with perovskite-like [A2Bi2Ti5O16]2− blocks. The structures were refined in the orthorhombic space group B2eb (SG. No. 41), Z=4, and the unit cell parameters of the oxides are a=5.4251(2), b=5.4034(1), c=48.486(1); a=5.4650(2), b=5.4625(3), c=48.852(1); a=5.4988(3), b=5.4980(4), c=50.352(1); a=5.4701(2), b=5.4577(2), c=49.643(1) for A=Ca, Sr, Ba and Pb, respectively. The structural features of the compounds were found similar to n=2-4 layers bismuth oxides. The strain caused by mismatch of cell parameter requirements for the [Bi2O2]2+ layers and perovskite-like [A2Bi2Ti5O16]2− blocks were relieved by tilting of the TiO6 octahedra. Variable temperature synchrotron X-ray studies for Ca and Pb compounds showed that the orthorhombic structure persisted up to 675 and 475 K, respectively. Raman spectra of the compounds are also presented.  相似文献   

11.
Photoluminescence (PL) of Eu3+ was studied in SrIn2O4 host lattice. A complete solid solubility of Eu3+ has been found in the series SrIn2−xEuxO4 [x=0-2.0]. The phase formation at a relatively low temperature and in a very short duration was achieved by combustion synthesis (CS). Concentration quenching of luminescence has been observed in SrIn2−xEuxO4 [x=0.1-2.0] and the critical concentration for maximum emission was found to be with x=0.3. In order to find the role of crystallite size on the PL properties of SrIn2O4:Eu3+, the results obtained with phosphors synthesized by solid state reaction (SSR) and CS methods were compared.  相似文献   

12.
Li4Ti5O12/(Ag+C)电极材料的固相合成及电化学性能   总被引:1,自引:0,他引:1  
以Li2CO3,TiO2为原料,葡萄糖为碳源,采用固相煅烧工艺合成了亚微米级的Li4Ti5O12/C复合负极材料。并将之与AgNO3复合,采用固相方法制备出了Ag表面修饰的Li4Ti5O12/(Ag+C)复合材料。采用XRD、SEM和TEM测试方法对材料的微结构进行了表征。结果表明,C的存在对Ag单质在Li4Ti5O12/C颗粒表面的大量形成起到了积极的促进作用,从而很大程度地提高了Li4Ti5O12/C的电导率,因此有效地改善了其电化学性能。在1C倍率下,Li4Ti5O12/(Ag+C)复合材料的首次放电容量达到了164 mAh·g-1。  相似文献   

13.
Electrochemical behavior and stability of spinel Li4Ti5O12 are investigated in a broad voltage window (0.0–5.0 V vs. Li/Li+). The voltage profile of the Li4Ti5O12 electrode shows a plateau region at 1.55 V and two sloped regions below 1.55 V when the electrode is cycled between 0.0 and 2.0 V. It is found that Li4Ti5O12 maintains high lithium storage characteristic with the increase of the current density. Moreover, Li4Ti5O12 shows excellent rate performance in 0.0–2.0 V and good cyclic performances in 0.0–4.0 and 1.0–5.0 V. Besides, the crystal structure is kept when it is cycled between 0.0 and 5.0 V.  相似文献   

14.
Lithium manganese titanium spinels, LiMn2−yTiyO4, (0.2≤y≤1.5) have been synthesized by solid-state reaction between TiO2 (anatase), Li2CO3 and MnCO3. Li+ was leached from the powdered reaction products by treatment in excess of 0.2 N HCl at 85 °C for 6 h, under reflux. The elemental composition of the acidic solution and solid residues of leaching has been determined by complexometric titration, atomic absorption spectroscopy and X-ray fluorescence analysis. Powder X-ray diffraction was used for structural characterization of the crystalline fraction of the solid residues. It has been found that the amount of Li+ leached from LiMn2−yTiyO4 decreases monotonically with increasing y in the interval 0.2≤y≤1.0 and abruptly drops to negligibly small values for y>1.0. The content of Mn and Li in the liquid phase and of Mn and Ti in the solid (amorphous plus crystalline) residue, were related to the composition and cation distribution in the pristine compounds. A new formal chemical equation describing the process of leaching and a mechanism of the structural transformation undergone by the initial solids as a result of Li+ removal has been proposed.  相似文献   

15.
Taking advantage of the fact that TiO2 additions to 8YSZ cause not only the formation of a titania-doped YSZ solid solution but also a titania-doped YTZP solid solution, composite materials based on both solutions were prepared by solid state reaction. In particular, additions of 15 mol% of TiO2 give rise to composite materials constituted by 0.51 mol fraction titania-doped yttria tetragonal zirconia polycrystalline and 0.49 mol fraction titania-doped yttria stabilized zirconia (0.51TiYTZP/0.49TiYSZ). Furthermore, Y2(Ti1−yZry)2O7 pyrochlore is present as an impurity phase with y close to 1, according to FT-Raman results. Lower and higher additions of titania than that of 15 mol%, i.e., x=0, 5, 10, 20, 25 and 30 mol% were considered to study the evolution of 8YSZ phase as a function of the TiO2 content. Furthermore, zirconium titanate phase (ZrTiO4) is detected when the titania content is equal or higher than 20 mol% and this phase admits Y2O3 in solid solution according to FE-SEM-EDX.The 0.51TiYTZP/0.49TiYSZ duplex material was selected in this study to establish the mechanism of its electronic conduction under low oxygen partial pressures. In the pO2 range from 0.21 to 10−7.5 atm. the conductivity is predominantly ionic and constant over the range and its value is 0.01 S/cm. The ionic plus electronic conductivity is 0.02 S/cm at 1000 °C and 10−12.3 atm. Furthermore, the onset of electronic conductivity under reducing conditions exhibits a −1/4 pO2 dependence. Therefore, it is concluded that the n-type electronic conduction in the duplex material can be due to a small polaron-hopping between Ti3+ and Ti4+.  相似文献   

16.
Single crystals of calcium ferrite CaFe2O4-type NaTi2O4 having millimeter-sized needle shapes were synthesized by a reaction of Na metal and TiO2 in a sealed iron vessel at 1473 K. Sodium-deficient NaxTi2O4 single crystals with 0.558<x<1 were successfully synthesized by a topotactic oxidation reaction using NaTi2O4 single crystals as parent materials. The crystal structures of NaxTi2O4 with x=0.970, 0.912, 0.799, 0.751, 0.717, 0.686, 0.611, and 0.558 were determined by the single-crystal X-ray diffraction method. The basic framework constructed by the Ti1O6 and Ti2O6 double rutile chains was maintained in these NaxTi2O4 compounds. Based on the results of bond valence analysis, we speculated that the Ti1 sites are preferentially occupied by Ti3+ cations over the compositional range of 0.8<x<1, while both the Ti1 and Ti2 sites are randomly occupied by Ti3+ and Ti4+ cations at x=0.558. Magnetic susceptibility data indicated that the broad maximum around 40 K observed in as-grown NaTi2O4 is suppressed by an Na deficiency and vanishes in Na0.717Ti2O4. The electrical resistivity increased with the Na deficiency; however, it was still semiconductive in Na0.799Ti2O4.  相似文献   

17.
以乙酰丙酮(ACAC)为螯合剂、聚乙二醇(PEG)为分散剂,采用溶胶-凝胶法合成了尖晶石型Li4Ti5Ol2/TiN材料.考察了TiN膜对尖晶石型Li4Ti5Ol2锂离子电池负极材料电化学性能的影响.利用X射线光电子能谱(XPS)对Li4Ti5O12表面的TiN膜进行了分析.X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明,Li4Ti5Ol2/TiN材料为结晶良好的亚微米纯相尖晶石型钛酸锂.电化学性能测试表明,该材料的首次放电比容量为173.0mAh·g-1,并且具有良好的循环性能,以0.2C、1C、2C、5C倍率放电进行测试,10次循环后比容量分别为170.6、147.6、135.6、111.0mAh·g-1,较之表面无TiN膜的钛酸锂材料表现出更好的倍率特性.循环伏安曲线(CV),交流阻抗图谱(EIS)进一步论证了TiN膜改善了尖晶石型Li4Ti5Ol2锂离子电池负极材料的电化学性能.  相似文献   

18.
For the Er3+–Yb3+ codoped Al2O3 powders, the strong near-infrared photoluminescence (PL) centered at 1.535 μm derived from the energy transfer (ET) from Yb3+ to Er3+ was detected by a 978 nm laser diode excitation. Compared with that of Er3+ doped Al2O3 powders, the PL intensity enhanced about 9 times, the full width at half maximum (FWHM) extended from 82 to 90 nm, and the lifetime increased from 3.22 to 4.17 ms for Er3+–Yb3+ codoped Al2O3 powders at room temperature. The ET coefficient of 2.18 × 10−18 cm3 s−1 from Yb3+ to Er3+ was obtained based on the rate equations. The decrease of PL intensity with increasing temperature in the range of 298–733 K was observed, due to thermally enhanced nonradiative relaxation 4I13/2 → 4I15/2 dominated over thermally enhanced phonon-assisted ET in the Er3+–Yb3+ codoped Al2O3.  相似文献   

19.
The porous hierarchical spherical Co3O4 assembled by nanosheets have been successfully fabricated. The porosity and the particle size of the product can be controlled by simply altering calcination temperature. SEM, TEM and SAED were performed to confirm that mesoporous Co3O4 nanostructures are built-up by numerous nanoparticles with random attachment. The BET specific surface area and pore size of the product calcined at 280 °C are 72.5 m2 g−1 and 4.6 nm, respectively. Our experiments further demonstrated that electrochemical performances of the synthesized products working as an anode material of lithium-ion battery are strongly dependent on the porosity.  相似文献   

20.
Li4Ti5O12 thin-film anode with high discharge capacity and excellent cycle stability for rechargeable lithium ion batteries was prepared successfully by using ink-jet printing technique. The prepared Li4Ti5O12 thin film were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammograms, and galvanostatic charge–discharge measurements. It was found that the average thickness of 10-layer Li4Ti5O12 film was about 1.7~1.8 μm and the active material Li4Ti5O12 in the thin film was nano-sized about 50–300 nm. It was also found that the prepared Li4Ti5O12 thin film exhibited a high discharge capacity of about 174 mAh/g and the discharge capacity in the 300th cycle retained 88% of the largest discharge capacity at a current density of 10.4 μA/cm2 in the potential range of 1.0–2.0 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号