首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IntroductionSincethepioneeringworksbyKachanov[1]andRabotnov[2 ]forcreepfailureofmetals,thedamagemechanicshasbeengreatlydevelopedandhasbecomeamostactiveresearcharea[3- 6 ].Thedescriptionofdamageconstitutiverelationsisabasicproblemofthedamagemechan ics.Thestrai…  相似文献   

2.
Gradient theories, as a regularized continuum mechanics approach, have found wide applications for modeling strain localization failure process. This paper presents a second gradient stress–strain damage elasticity theory based upon the method of virtual power. The theory considers the strain gradient and its conjugated double stresses. Instead of introducing an intrinsic material length scale into the constitutive law in an ad hoc fashion, a microstructural granular mechanics approach is applied to derive the higher-order constitutive coefficients such that the internal length scale parameter reflects the natural granularity of the underlying material microstructure. The derivations of the required damage constitutive relationships, the strong form governing equations as well as its weak form for the second gradient model are described. The recently popularized Element-Free Galerkin (EFG) method is then employed to discretize the weak form equilibrium equation for accommodating the resultant higher-order continuity requirements and further handling the mesh sensitivity problem. Numerical examples for shear band simulations show that the proposed second gradient continuum model can produce stable, accurate as well as mesh-size independent solutions without a priori assumption of the shear band path.  相似文献   

3.
孙红  赵锡宏 《力学季刊》2001,22(3):307-316
在软土各向异性弹塑性损伤模型的基础上,把小应变模型扩展到有限应变模型,推导出不排水平面应变条件下的剪切带形成条件,分析K0固结状态下各向异性损伤对剪切带形成的影响.以上海软土为例,分析临界状态参数β=0.9时,损伤变量D1,D2的不同组合的剪切角和简单剪切模量与有效平均主应力比(g/p')的关系曲线.计算结果表明,损伤变量越大,越接近不稳定状态,垂直方向损伤对剪切带的影响比水平方向的强烈. 特别指出无论土为横观各向同性损伤的情况,还是各向异性损伤的情况,在本文研究的条件下,不稳定状态(g/p'为最小值)相应两个剪切角约在50°和130°,这对研究弹塑性损伤对剪切带形成与变化有指导意义.  相似文献   

4.
Shear band localization is investigated by a strain-gradient-enhanced damage model for quasi-brittle geomaterials. This model introduces the strain gradients and their higher-order conjugate stresses into the framework of continuum damage mechanics. The influence of the strain gradients on the constitutive behaviour is taken into account through a generalized damage evolutionary law. A weak-form variational principle is employed to address the additional boundary conditions introduced by the incorporation of the strain gradients and the conjugate higher-order stresses. Damage localization under simple shear condition is analytically investigated by using the theory of discontinuous bifurcation and the concept of the second-order characteristic surface. Analytical solutions for the distributions of strain rates and strain gradient rates, as well as the band width of localised damage are found. Numerical analysis demonstrates the shear band width is proportionally related to the internal length scale through a coefficient function of Poisson’s ratio and a parameter representing the shape of uniaxial stress–strain curve. It is also shown that the obtained distributions of strains and strain gradients are well in accordance with the underlying assumptions for the second-order discontinuous shear band boundary and the weak discontinuous bifurcation theory.  相似文献   

5.
气泡在液体中运动过程的数值模拟   总被引:7,自引:1,他引:7  
本文用数值方法预测气泡在液体中的百定常运动。运用位标函数进行界面的隐含跟踪并且与有限体积法相结合构成一种可行的计算方法。本文方法允许在界面处存在很大的物性差,而且较容易将表面张力引入控制方程。我们对气液两相流中单个气泡的运动进行了计算,得到了与实验结果符合很好的数值结果。  相似文献   

6.
A micromechanical model is proposed to describe both stable and unstable damage evolution in microcrack-weakened brittle rock material subjected to dynamic uniaxial tensile loads. The basic idea of the present model is to classify the constitution relationship of rock material subjected to dynamic uniaxial tensile loads into four stages including some of the stages of linear elasticity, pre-peak nonlinear hardening, rapid stress drop, and strain softening, and to investigate their corresponding micromechanical damage mechanisms individually. Special attention is paid to the transition from structure rearrangements on microscale to the macroscopic inelastic strain, to the transition from distribution damage to localization of damage and the transition from homogeneous deformation to localization of deformation. The influence of all microcracks with different sizes and orientations are introduced into the constitutive relation by using the statistical average method. Effects of microcrack interaction on the complete stress-strain relation as well as the localization of damage for microcrack-weakened brittle rock material are analyzed by using effective medium method. Each microcrack is assumed to be embedded in an approximate effective medium that is weakened by uniformly distributed microcracks of the statistically-averaged length depending on the actual damage state. The elastic moduli of the approximate effective medium can be determined by using the dilute distribution method. Micromechanical kinetic equations for stable and unstable growth characterizing the ‘process domains’ of active microcracks are taken into account. These ‘process domains’ together with ‘open microcrack domains’ completely determine the integration domains of ensemble averaged constitutive equations relating macro-strain and macro-stress. Theoretical predictions have shown to consistent with the experimental results.  相似文献   

7.
考虑损伤的内变量黏弹-黏塑性本构方程   总被引:1,自引:0,他引:1  
张泷  刘耀儒  杨强  薛利军 《力学学报》2014,46(4):572-581
基于Rice 不可逆内变量热力学框架,在约束构型空间中讨论材料的蠕变损伤问题. 通过给定具体的余能密度函数和内变量演化方程推导出考虑损伤的内变量黏弹-黏塑性本构方程. 通过模型相似材料单轴蠕变加卸载试验对一维情况下的本构方程进行参数辨识和模型验证,本构方程能很好地描述黏弹性变形和各蠕变阶段.不同的蠕变阶段具有不同的能量耗散特点. 受应力扰动后,不考虑损伤的材料系统能自发趋于热力学平衡态或稳定态. 在考虑损伤的整个蠕变过程中,材料系统先趋于平衡态再背离平衡态发展. 能量耗散率可作为材料系统热力学状态偏离平衡态的测度;能量耗散率的时间导数可用于表征系统的演化趋势;两者的域内积分值可作为结构长期稳定性的评价指标.   相似文献   

8.
In this paper a thermodynamically consistent, weakly nonlocal theory of ductile damage is presented. The theory is based on the classical dynamical balance laws of forces and couples in the physical space and dynamical balance laws of material forces on evolving defects and on the first and second law of thermodynamics formulated for physical and material space. Assuming general constitutive equations their frame-invariant and thermodynamically admissible form is determined. It is shown that physical and material forces and stresses consist of two parts, a nondissipative part derivable from a free energy potential, and a dissipative part, which can be obtained from a dissipation pseudo-potential, if such a pseudo-potential exists.The theory can be considered as a framework with gradient elastoplasticity, isotropic and anisotropic brittle and ductile gradient damage at finite strain as special cases.  相似文献   

9.
Combinations of gradient plasticity with scalar damage and of gradient damage with isotropic plasticity are proposed and implemented within a consistently linearized format. Both constitutive models incorporate a Laplacian of a strain measure and an internal length parameter associated with it, which makes them suitable for localization analysis.The theories are used for finite element simulations of localization in a one-dimensional model problem. The physical relevance of coupling hardening/softening plasticity with damage governed by different damage evolution functions is discussed. The sensitivity of the results with respect to the discretization and to some model parameters is analyzed. The model which combines gradient-damage with hardening plasticity is used to predict fracture mechanisms in a Compact Tension test.  相似文献   

10.
Starting with the framework of conventional elastoplastic damage mechanics, a class of stochastic damage constitutive model is derived based on the concept of energy equivalent strain. The stochastic damage model derived from the parallel element model is adopted to develop the uniaxial damage evolution function. Based on the expressions of damage energy release rates (DERRs) conjugated to the damage variables thermodynamically, the concept and its tensor formulations of energy equivalent strain is proposed to bridge the gap between the uniaxial and the multiaxial constitutive models. Furthermore, a simplified coupling model is proposed to consider the evolution of plastic strain. And the analytical expressions of the constitutive model in 2-D are established from the abstract tensor expression. Several numerical simulations are presented against the biaxial loading test results of concrete, demonstrating that the proposed models can reflect the salient features for concrete under uniaxial and biaxial loading conditions.  相似文献   

11.
一个综合模糊裂纹和损伤的混凝土应变软化本构模型   总被引:5,自引:0,他引:5  
本文研究就变软化材料的本构关系,提出了一个考虑损伤的粘塑性模型,损伤不仅影响材料的临界应力,而且影响材料的粘塑性,为模拟材料的应变软化行为,假设受损混凝土的破坏局部区域由模糊裂纹和损伤所统治,软化模量和局部区域尺度参量依赖于模糊裂纹扩展时释放的断裂能的参变量,用文中提出的模型计算了混凝土单轴压缩时不同应变速率下的瞬时应力应变响应以及等应力长期作用下的徐变,均得到很的结果。  相似文献   

12.
A micromechanics-based model is proposed to describe unstable damage evolution in microcrack-weakened brittle rock material. The influence of all microcracks with different sizes and orientations are introduced into the constitutive relation by using the statistical average method. Effects of microcrack interaction on the complete stress–strain relation as well as the localization of damage for microcrack-weakened brittle rock material are analyzed by using effective medium method. Each microcrack is assumed to be embedded in an approximate effective medium that is weakened by uniformly distributed microcracks of the statistically-averaged length depending on the actual damage state. The elastic moduli of the approximate effective medium can be determined by using the dilute distribution method. Micromechanical kinetic equations for stable and unstable growth characterizing the ‘process domains’ of active microcracks are taken into account. These ‘process domains’ together with ‘open microcrack domains’ completely determine the integration domains of ensemble averaged constitutive equations relating macro-strain and macro-stress. Theoretical predictions have shown to be consistent with the experimental results.  相似文献   

13.
提出了纯弯曲梁的应变损伤失效分析方法,与Kachanov的材料受载横截面减少定义拉伸损伤变量类似,以梁的弯曲惯性矩阵减少定义弯曲损伤变量。推导了梁的弯曲应变损伤基本方程,其中的材料常数可由Kachanov拉伸损伤模型的材料常数确定。并且提出了便于工程应用的应变失效预测方程。  相似文献   

14.
孙毅  王铎 《力学季刊》1995,16(2):87-95
本文在作者提出的含孔洞材料下限本构方程的基础上,采用了初始缺陷带模型对微孔洞生长及分布对板材拉伸过程中变形局部影响进行了,分析着重研究了细观损演化规律对变形局部化模式及临界应变的影响,并成功预测了AISI4340钢板材拉伸试件变形局部化换稳为及失稳方向。  相似文献   

15.
梯度塑性的有限元分析及应变局部化模拟   总被引:7,自引:0,他引:7  
对梯度塑性连续体提出了一个有限元方法.内状态变量的Laplacian的确定基于它在求积点邻域的最小二乘方多项式近似.具体地考虑了具有一点求积和Hourglass控制特点的基于胡海昌-Washizu变分原理的混合应变元和单元平均意义下的von-Mises屈服准则.解析地导出了梯度塑性下一致性单元切线刚度矩阵和速率本构方程的一致性积分算法.在所建议的非局部化途径中求积点的一致性条件在非局部化意义下逐点精确满足.数值例题表明所提出的非经典连续体的有限元方法求解应变局部化问题的有效性  相似文献   

16.
从冻土微元破坏服从Weibull随机分布的特点出发,将Mohr--Coulomb强度准则作为冻土微元统计分布变量,利用应变等价性假说,建立了单轴应力状态下冻结黏土损伤本构模型;在此基础上,讨论了模型参数和弹性模量与冻结温度的关系,对模型参数和弹性模量进行合理修正,建立了温度影响下的冻结黏土损伤本构模型,并与试验结果进行对比。分析结果表明:考虑温度效应的损伤本构模型能很好地模拟冻结黏土应力--应变全过程曲线,具有很好的适应性。  相似文献   

17.
In many practical applications of nanotechnology and in microelectromechanical devices, typical structural components are in the form of beams, plates, shells and membranes. When the scale of such components is very small, the material microstructural lengths become important and strain gradient elasticity can provide useful material modelling. In addition, small scale beams and bars can be used as test specimens for measuring the lengths that enter the constitutive equations of gradient elasticity. It is then useful to be able to apply approximate solutions for the extension, shear and flexure of slender bodies. Such approach requires the existence of some form of the Saint-Venant principle. The present work presents a statement of the Saint-Venant principle in the context of linear strain gradient elasticity. A reciprocity theorem analogous to Betti’s theorem in classic elasticity is provided first, together with necessary restrictions on the constitutive equations and the body forces. It is shown that the order of magnitude of displacements are in accord with the Sternberg’s statement of the Saint-Venant principle. The cases of stretching, shearing and bending of a beam were examined in detail, using two-dimensional finite elements. The numerical examples confirmed the theoretical results.  相似文献   

18.
In this paper, the following conclusions are reached: The influence of damage on the stress and strain feilds can be neglected in an asymptotic sense for the solutions of damage field in a plastic solid containing small damage. The formulation of the problem is simplified with an uncoupled approach. Based on experimental results of plastic damage, most of the damage in the material are considered as small damage with the critacal damage variable ω c ≪1. Using this approach, closed form expressions of the near tip damage fields for mode III, mode I and the temperature distribution induced by plastic dissipation in a hardening material containing damage are deduced. We point out that the temperature distribution in the process zone is strongly dependent on the damage of materials even for the small damage case. The results of the predicted value of the temperature rise near the tip region ignoring the damage effect is appreciably higher than the observed data. The main reason of this discrepancy is the presence of damage dissipation and the fact that its influence on the calculation of plastic dissipation have not been appropriately taken account of. The calculation is improved by taking into account the damage effect on the temperature rise, then theT max value is in better accord with the experimental value. The project supported by the National Natural Science Foundation of China.  相似文献   

19.
Internal state variable rate equations are cast in a continuum framework to model void nucleation, growth, and coalescence in a cast Al–Si–Mg aluminum alloy. The kinematics and constitutive relations for damage resulting from void nucleation, growth, and coalescence are discussed. Because damage evolution is intimately coupled with the stress state, internal state variable hardening rate equations are developed to distinguish between compression, tension, and torsion straining conditions. The scalar isotropic hardening equation and second rank tensorial kinematic hardening equation from the Bammann–Chiesa–Johnson (BCJ) Plasticity model are modified to account for hardening rate differences under tension, compression, and torsion. A method for determining the material constants for the plasticity and damage equations is presented. Parameter determination for the proposed phenomenological nucleation rate equation, motivated from fracture mechanics and microscale physical observations, involves counting nucleation sites as a function of strain from optical micrographs. Although different void growth models can be included, the McClintock void growth model is used in this study. A coalescence model is also introduced. The damage framework is then evaluated with respect to experimental tensile data of notched Al–Si–Mg cast aluminum alloy specimens. Finite element results employing the damage framework are shown to illustrate its usefulness.  相似文献   

20.
裂隙岩体损伤局部化破坏分岔模型及其应用   总被引:7,自引:0,他引:7  
采用概率统计方法分析节理裂隙岩体的几何特征,定义了反映裂隙岩体几何特征的组构张量.基于不可逆热力学理论,通过裂纹扩展的细观分析,得出了损伤的发展机理和演化方程,把损伤演化和裂隙的几何特征的变化联系起来,建立了弹塑性损伤本构关系.为分析含有节理裂隙岩体在发生局部化破坏时的特征,通过对发生局部化时的裂隙岩体的分析。构造了适用于节理裂隙岩体局部化分析的不连续分岔模型.利用非线性规划数值解法,可以得出局部化破坏的方向特征.在有限元方法中,根据该模型给出了节理裂隙岩体相关的算例,分析表明该模型用于分析裂隙岩体的局部化破坏是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号