首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The aggregation of soluble, nontoxic amyloid beta (Abeta) peptide to beta-sheet containing fibrils is assumed to be a major step in the development of Alzheimer's disease. Interactions of Abeta with neuronal membranes could play a key role in the pathogenesis of the disease. Herein, we study the adsorption of synthetic Abeta peptide to DPPE and DMPE monolayers (dipalmitoyl- and dimyristoylphosphatidylethanolamine). Both lipids exhibit a condensed monolayer state at 20 degrees C and form a similar lattice. However, at low packing densities (at large area per molecule), the length of the acyl chains determines the phase behavior, therefore DPPE is fully condensed whereas DMPE exhibits a liquid-expanded state with a phase transition at approximately 5-6 mNm(-1). Adsorption of Abeta to DPPE and DMPE monolayers at low surface pressure leads to an increase of the surface pressure to approximately 17 mNm(-1). The same was observed during adsorption of the peptide to a pure air-water interface. Grazing incidence X-ray diffraction (GIXD) experiments show no influence of Abeta on the lipid structure. The adsorption kinetics of Abeta to a DMPE monolayer followed by IRRAS (infrared reflection absorption spectroscopy) reveals the phase transition of DMPE molecules from liquid-expanded to condensed states at the same surface pressure as for DMPE on pure water. These facts indicate no specific interactions of the peptide with either lipid. In addition, no adsorption or penetration of the peptide into the lipid monolayers was observed at surface pressures above 30 mNm(-1). IRRAS allows the measurement of the conformation and orientation of the peptide adsorbed to the air-water interface and to a lipid monolayer. In both cases, with lipids at surface pressures below 20 mNm(-1) and at the air-water interface, adsorbed Abeta has a beta-sheet conformation and these beta-sheets are oriented parallel to the interface.  相似文献   

2.
《Chemical physics letters》2006,417(1-3):22-27
Copper-Octaethyl Porphyrin self-assembly has been studied on NaCl islands, 1–3 monolayers thick, grown on metal substrates. Extended ordered molecular monolayers are observed for the first time on ultrathin insulator films. The assembly occurs in hierarchical fashion, starting on the metal substrate, then followed by assembly on the first and second NaCl layers, clearly demonstrating a decrease in adsorption energy for increasing insulator layer thickness. The underlying mechanisms are discussed on the basis of molecule–substrate interactions. Voltage-dependent STM images reveal differences of the electronic structure for molecules adsorbed on metal and NaCl/metal areas.  相似文献   

3.
Structure and orientation of molecules are key properties of functionalized surfaces. Using time-of-flight secondary ion mass spectrometry (TOF-SIMS), here we investigate how to modulate these parameters upon the immobilization process varying the conditions of self-assembly. The molecule of interest, a template-assembled synthetic protein (TASP), consists of a central peptide ring with orthogonally arranged residues. Thioalkane chains allow the directed self-assembly of the molecule on a gold surface; four serine residues on the opposite side of the ring can be used as anchoring sites for various functional sensing molecules. The TASP conformation and its orientation in self-assembled monolayers (SAMs) play a central role for the accessibility of these serine residues. To study the influence of the self-assembly conditions, two series of samples were prepared. Pure TASP monolayers of different surface densities are compared to mixed TASP/alkanethiol monolayers prepared by sequential adsorption varying sequence and particular incubation times as well as by coadsorption modifying incubation times and TASP/alkanethiol mass ratios. Switching the TASP orientation from a state where the molecules are lying flat on the surface to an upright orientation turned out to be possible by inserting the TASP into a preformed alkanethiol monolayer of an appropriate surface density. This study demonstrates that TOF-SIMS is an excellent tool not only to investigate the surface composition, but also the molecular structure of functionalized surfaces.  相似文献   

4.
The self-assembly of a series of 1,3-disubstituted benzenes has been scrutinized by scanning tunneling microscopy (STM) and computational modeling. Small changes in the functional groups (e.g., ester, thioester, ketone) resulted in dramatic changes in packing patterns. Remarkably, several of the molecules gave rise to monolayers with more than one molecule in the asymmetric unit and displayed multiple packing patterns. This constitutes the most complex behavior observed to date in this type of monolayer and illuminates several issues of importance in three-dimensional crystallization. Intermolecular interactions associated with the observation of multiple molecules in the asymmetric unit and stabilization of pseudopolymorphs were identified. The geometry and electrostatic properties of the isolated molecule and monolayer density were found to be critical in determining which packing motif was adopted.  相似文献   

5.
Mono- and multilayers of a novel amphiphilic hexapyridinium cation with six eicosyl chains (3) are spread at the air/water interface as well as on highly ordered pyrolytic graphite (HOPG). On water, the monolayer of 3 is investigated by recording surface pressure/area and surface potential/area isotherms, and by Brewster angle microscopy (BAM). Self-organized tubular micelles with an internal edge-on orientation of molecules form at the air/water interface at low surface pressure whereas multilayers are present at high surface pressure, after a phase transition. Packing motifs suggesting a tubular arrangement of the constituting molecules were gleaned from atomic force microscopy (AFM) investigations of Langmuir-Blodgett (LB) monolayers being transferred on HOPG at different surface pressures. These LB film structures are compared to the self-assembled monolayer (SAM) of 3 formed via adsorption from a supersaturated solution, which is studied by scanning tunnelling microscopy (STM). On HOPG the SAM of 3 consists of nanorods with a highly ordered edge-on packing of the aromatic rings and an arrangement of alkyl chains which resembles the packing of molecules at the air/water interface at low surface pressure. Additional details of the molecular packing were gleaned from single-crystal X-ray structure analysis of the hexapyridinium model compound 2b, which possesses methyl instead of eicosyl residues.  相似文献   

6.
Liquid-liquid interfaces formed between water and ionic liquids serve as fluid scaffolds to self-assemble anionic nanospheres two-dimensionally. When aqueous dispersions of anionic fluorescent polystyrene nanospheres (diameter ~500 nm) are layered on ionic liquids, ordered monolayers are spontaneously formed at the interface. Fluorescent nanospheres are hexagonally packed in the interfacial monolayers, as observed by confocal laser scanning microscopy (CLSM). The adsorption and alignment of nanospheres at the interface are affected by the ionic strength and pH of the aqueous phase, indicating electrostatic interaction as the primary driving force for the self-assembly. CLSM observation of the water/ionic liquid interface reveals that the lower hemisphere of nanospheres is exposed to the ionic liquid phase, which effectively alleviates lateral electrostatic repulsion between charged nanospheres and promotes their close packing. The densely packed monolayer structure of nanospheres is stably immobilized on the surface of CLSM glass dishes simply by rinsing the ionic liquid layer with pure water, probably as a consequence of the gluing effect exerted by imidazolium cations. The fluidic nature of the water/ionic liquid interface facilitates the diffusion and ordering of nanospheres into a hexagonal lattice, and these features render the interface promising soft scaffolds to self-assemble anionic nanomaterials two-dimensionally.  相似文献   

7.
Surface molecular self-assembly is a fast advancing field with broad applications in sensing, patterning, device assembly, and biochemical applications. A vast number of practical systems utilize alkane thiols supported on gold surfaces. Whereas a strong Au-S bond facilitates robust self-assembly, the interaction is so strong that the surface is reconstructed, leaving etch pits that render the monolayers susceptible to degradation. By using different head group elements to adcust the molecule-surface interaction, a vast array of new systems with novel properties may be formed. In this paper we use a carefully chosen set of molecules to make a direct comparison of the self-assembly of thioether, selenoether, and phosphine species on Au(111). Using the herringbone reconstruction of gold as a sensitive readout of molecule-surface interaction strength, we correlate head-group chemistry with monolayer (ML) properties. It is demonstrated that the hard/soft rules of inorganic chemistry can be used to rationalize the observed trend of molecular interaction strengths with the soft gold surface, that is, P>Se>S. We find that the structure of the monolayers can be explained by the geometry of the molecules in terms of dipolar, quadrupolar, or van der Waals interactions between neighboring species driving the assembly of distinct ordered arrays. As this study directly compares one element with another in simple systems, it may serve as a guide for the design of self-assembled monolayers with novel structures and properties.  相似文献   

8.
Through rigorous control of preparation conditions, organized monolayers with a highly reproducible structure can be formed by solution self-assembly of octadecanethiol on GaAs (001) at ambient temperature. A combination of characterization probes reveal a structure with conformationally ordered alkyl chains tilted on average at 14 +/- 1 degrees from the surface normal with a 43 +/- 5 degrees twist, a highly oleophobic and hydrophobic ambient surface, and direct S-GaAs attachment. Analysis of the tilt angle and film thickness data shows a significant mismatch of the average adsorbate molecule spacings with the spacings of an intrinsic GaAs(001) surface lattice. The monolayers are stable up to approximately 100 degrees C and exhibit an overall thermal stability which is lower than that of the same monolayers on Au[111] surfaces. A two-step solution assembly process is observed: rapid adsorption of molecules over the first several hours to form disordered structures with molecules lying close to the substrate surface, followed by a slow densification and asymptotic approach to final ordering. This process, while similar to the assembly of alkanethiols on Au[111], is nearly 2 orders of magnitude slower. Finally, despite differences in assembly rates and the thermal stability, exchange experiments with isotopically tagged molecules show that the octadecanethiol on GaAs(001) monolayers undergo exchange with solute thiol molecules at roughly the same rate as the corresponding exchanges of the same monolayers on Au[111].  相似文献   

9.
For the purpose of elucidating the effects of molecular arrangements on the reaction rates and the structure of products, polycondensation of long-chain esters of alpha-amino acids in the monolayer on the water surface and the LB multilayers deposited on CaF2 plates were investigated by monitoring changes of the IR spectra. Spontaneous formation of the polypeptides occurs in the mono- and multilayers at room temperature without any catalyst. The rates of polycondensation in the monolayers are markedly influenced by the degree of molecular packing. Maximum polymerizability is obtained in the vicinity of the transition region from expanded to condensed films. The rates of polycondensation in the LB films are much higher than those in the bulk solids and the molten states. The polycondensation seems to be accelerated by regular arrangements of the monomer molecules in the LB films, where the functional groups are concentrated and situated more effectively for the reaction than in the bulk states. However, the polycondensation rates in the LB films are considerably slower when compared with those in the monolayers on the water surface kept at the optimum area or surface pressure, because the molecules in the LB films deposited under high compression are packed more closely than the optimum condition. Thus, suitably close packing of the monomer molecules, retaining a particular orientation together with some conformational freedom in the monolayer, is most favorable for the polycondensation. Two probable mechanisms for the polycondensation in the Y-type multilayers have been proposed. In the assembly of head-to-head double layers of the monomer molecules, the interlayer reaction propagates by sewing up the functional groups facing each other in the adjacent layers, and the polypeptide of a helical structure or random coil can be obtained. In contrast, for the alternating assembly of the amino acid ester and non-polymerizable octadecyl acetate, the polycondensation should proceed only in each single layer (intralayer reaction) and the polypeptide of the extended beta-form can be formed. In the case of dioctadecyl glutamate LB films, as well as the monolayer on water, the resultant polypeptide is the comb-like polymer with unreacted long-alkyl ester groups as side chains and abundant in the beta-form, indicating the dominant intralayer reaction. On the other hand, in the Y-type multilayer of the equimolar mixture of dioctadecyl glutamate (with two ester groups) and octadecyl ester of lysine (with two amino groups), both of the intra- and interlayer reactions occur effectively, resulting in a two-dimensional network structure of the polypeptide. In conclusion, not only the rate of polycondensation but also the higher-order structure of the resultant polypeptides can be controlled by organized arrangements of the monomer molecules in the interfacial thin films.  相似文献   

10.
Supported cell mimetic monolayers and their interaction with blood   总被引:1,自引:0,他引:1  
Surface modification using supported monolayers of phosphorylcholine containing phospholipids has been an accepted strategy for developing blood-contacting materials. We present a detailed study of the blood compatibility of the supported monolayers of phospholipid, glycolipid, and cholesterol (Chol) binary and ternary lipid combinations using in vitro techniques. The packing and orientation of these monolayers have been correlated with the blood compatibility. We have used phosphatidylcholine (PTC) for phospholipid, galactocerebroside (Gal) for glycolipid, and Chol based on the headgroup structure to represent the major lipid components of the endothelial luminal cell membrane. The interfacial behavior of various combinations of PTC, Gal, and Chol monolayers have been studied at the air/water interface and deposited on hydrophobic polycarbonate (PC) polymer substrates with the help of the Langmuir-Blodgett trough. The packing and orientation of the supported monolayers have been varied by means of changing the lipid composition rather than the deposition parameters. This approach seems to be more similar to the in vivo conditions. The different supported monolayer surfaces prepared accordingly are (1) a closely packed ordered hydrophobic surface, PC modified with the combination PTC/Chol/Gal (1:0.35:0.125), (2) a loosely packed ordered hydrophobic surface, PC modified with the combination PTC/Chol (1:0.35), and (3) a closely packed ordered hydrophilic surface, PC modified with the combination PTC/Chol (1:0.7). An optimized modified surface (PTC/Chol/Gal, 1:0.35:0.125) has been identified on the basis of the maximum transfer ratio from the air/water interface and characterized by using atomic force microscopy. The concentration of Chol has been found to be an important parameter, which influences the transfer ratio. The Gal improves the monolayer integrity under a reduced Chol concentration. The blood compatibility of these supported monolayers was studied by protein adsorption, blood cell adhesion, and calcification. The tightly packed ordered hydrophobic surface (PTC/Chol/Gal, 1:0.35:0.125), has been found to be more blood compatible because of reduced blood cell adhesion and calcification. This surface also promotes albumin adsorption and may be the reason for the reduced platelet activation, while in the case of the loosely packed ordered hydrophobic surface (PTC/Chol, 1:0.35) the protein adsorption also has been reduced along with the blood cell adhesion and calcification. When the ordered hydrophilic surface (PTC/Chol, 1: 0.7) of the monolayer has been exposed, the blood cell adhesions as well as the overall protein adsorption were significantly reduced. However, the packing of the phosphorylcholine moieties of the polar headgroup has been affecting the calcification on the surface. We have observed an increase in calcification to the surface modified with the loosely packed polar headgroup, from a relative study on chitosan and chitosan modified with the monolayer of PTC. These findings are helpful for the surface modifications for blood-contacting materials using this strategy.  相似文献   

11.
12.
A twin-tailed, twin-chiral fatty acid, (2R,3R)-(+)-bis(decyloxy)succinic acid was synthesized and its two dimensional behavior at the air-water interface was examined. The pH of the subphase had a profound effect on the monolayer formation. On acidic subphase, stable monolayers with increased area per molecule due to hydrogen bonding and bilayers at collapse pressures were observed. Highly compressible films were formed at 40 degrees C, while stable monolayers with increased area were observed at sub-room temperatures. Langmuir monolayers formed on subphases containing 1 mM ZnCl2 and CaCl2 revealed two dimensional metal complex formation with Zn2+ forming a chelate-type complex, while Ca2+ formed an ionic-type complex. Monolayers transferred from the condensed phase onto hydrophilic Si(100) and quartz substrates revealed the formation of bilayers through transfer-induced monolayer buckling. Compression induced crystallites in 2D from monolayers and vesicle-like supramolecular structures from multilayers were the noted LB film characteristics, adopting optical imaging and electron microscopy. The interfacial monolayer structure studied through molecular dynamics simulation revealed the order and packing at a molecular level; monolayers adsorbed at various simulated specific areas of the molecule corroborated the (pi-A) isotherm and the formation of a hexagonal lattice at the air-water interface.  相似文献   

13.
Sum-frequency spectroscopy (SFS) in the CH and OH stretching regions was employed to obtain structural information about Langmuir monolayers on the H(2)O subphase of the model lipid dioctadecyldimethylammonium bromide (DOMA) and of the neutral surfactant methyl stearate (SME) and their mixtures and about the interfacial water structure underneath the films. These results were compared with the sum-frequency spectra of the interface between Langmuir monolayers of stearic acid and stearic acid-DOMA monolayers and water to prove that the uncompensated headgroup charge of DOMA at the interface is the reason for structuring of interfacial water close to the studied monomolecular films. Sum-frequency spectra on D(2)O subphase were also studied to account for the interference between the CH and OH spectral signatures because of the coherent nature of the SFS signals. Interfacial water structure proved to be a determining factor in the behavior of the mixed lipid monolayers. A mixing induced amplification in the surface potential DeltaV observed in our previous work was explained with total increase of the dipole moment for the mixed films, bigger than the arithmetic average for DOMA and SME monolayers alone. The increase is due to the better packing of the molecules in the mixed films and to the decrease in the interfacial water dipole moment arising from a more disordered water structure underneath the mixed monolayers.  相似文献   

14.
A 30-residue peptide, BS30, which incorporates two proline residues to induce reverse turns, was designed to form a triple-stranded beta-sheet monolayer at the air-water interface. To discern the structural role of proline, a second peptide, BS30G, identical to BS30 but with glycine residues replacing proline, was prepared and examined in parallel fashion. Surface pressure-molecular area isotherms indicated a limiting area per molecule (ca. 460 A(2)) for BS30 that corresponds well to that estimated from the known dimensions of crystalline beta-sheet monolayers (492 A(2)). Comparable measurements on BS30G yielded a smaller molecular area (380 A(2)). Grazing incidence X-ray diffraction measurements performed on the BS30 monolayer at nominal area per molecule of 500 A(2), exhibited two Bragg peaks corresponding to 4.79 and 34.9 A spacings, consistent with formation of triple-stranded beta-sheet structures that assemble into two-dimensional crystallites at the air-water interface. Visualized by Brewster angle microscopy, BS30 monolayers displayed uniform, solidlike domains, whereas BS30G appeared to be disordered.  相似文献   

15.
The self-assembly and supramolecular engineering of porphyrins into ordered arrays have recently attracted much interest because of their promising application potential in molecular and electronic devices, spintronics, energy harvesting and storage, catalysis, and sensor development. We herein report the synthesis and supramolecular self-assembly study of a novel porphyrin molecule, 2Por-TAZ, in Langmuir and Langmuir-Blodgett films. The 2Por-TAZ molecule contains two porphyrin macrocycles attached to a triaminotriazine headgroup. Triaminotriazines are known to form a highly ordered linear supramolecular self-assembly through complementary hydrogen bonding with barbituric acid molecules at the air-water interface. Surface pressure-area isotherm measurements and polarized UV-vis absorption spectroscopic studies indicate that the 2Por-TAZ molecules adopted an edge-on orientation at the air-water interface. Polarized UV-vis absorption study also revealed that the 2Por-TAZ molecules formed linear supramolecular networks on pure water and barbituric acid subphase with porphyrin flat planes facing toward the compression direction. The binding of barbituric acid with 2Por-TAZ molecules was observed from the expansion of the Langmuir monolayer film. Compared to the transferred LB film from pure water subphase, both the UV-vis absorbance and fluorescence emission intensity of the LB film transferred from barbituric acid subphase increased significantly.  相似文献   

16.
The development of specific agents against amyloidoses requires an understanding of the conformational distribution of fibrillogenic peptides at a microscopic level. Here, I present molecular dynamics simulations of the model amyloid peptide LSFD with sequence LSFDNSGAITIG-NH2 in explicit water and at a water/vapor interface for a total time scale of approximately 1.8 micros. An extended structure was used as initial peptide configuration. At approximately 290 K, solvated LSFD was kinetically trapped in diverse misfolded beta-sheet/coil conformations. At 350 K, in contrast, the same type II' beta-hairpin in equilibrium with less ordered but also U-shaped conformations was observed for the core residues DNSGAITI in solution and at the interface in multiple independent simulations. The most stable structural unit of the beta-hairpin was the two residue turn (GA). The core residues exhibited a well-defined folded state in which the beta-hairpin was stabilized by a hydrogen bond between the side chain of Asn-385 and the main chain carbonyl group of Gly-387. My results suggest that beta-sheet conformations indicated from previous Fourier-transform infrared spectroscopy measurements immediately after preparation of the peptide solution may not arise from protofilaments as speculated by others but are a property of LSFD monomers. In addition, combined with previous results from X-ray scattering, my findings suggest that interfacial aggregation of LSFD implies a transition from U-shaped to extended peptide conformations. This work including the first simulations of reversible beta-hairpin folding at an interface is an essential step toward a microscopic understanding of interfacial peptide folding and self-assembly. Knowledge of the main conformation of the peptide core may facilitate the design of possible inhibitors of LSFD aggregation as a test ground for future computational therapeutic strategies against amyloid diseases.  相似文献   

17.
The design of new molecules with directed interactions to functional molecules as complementary building blocks is one of the main goals of supramolecular chemistry. A new p-tert-butylcalix[6]arene monosubstituted derivative bearing only one alkyl chain with an acid group (C6A3C) has been synthesized. The C6A3C has been successfully used for building Langmuir monolayers at the air-water interface. The C6A3C molecule adopts a flatlike orientation with respect to the air-water interface. The molecular structure gives the molecule amphiphilic character, while allowing the control of both the dissociation degree and the molecular conformation at the air-water interface. The C63AC has been combined with pristine fullerene (C60) to form the supramolecular complex C6A3C:C60 in 2:1 molar ratio (CFC). The CFC complex retains the ability of C6A3C to form Langmuir monolayers at the air/water interface. The interfacial molecular arrangement of the CFC complex has been convincingly described by in situ UV-vis reflection spectroscopy and synchrotron X-ray reflectivity measurements. Computer simulations complement the experimental data, confirming a perpendicular orientation of the calixarene units of CFC with respect to the air-water interface. This orientation is stabilized by the formation of intermolecular H-bonds. The interfacial monolayer of the CFC supramolecular complex is proposed as a useful model for the well-defined self-assembly of recognition and functional building blocks.  相似文献   

18.
Scanning tunneling microscopy has been used to determine the molecular ordering in stable, ordered monolayers formed from long-chain normal and substituted alkanes in solution on highly oriented pyrolytic graphite surfaces. Monolayers were initially formed using an overlying solution of either a symmetrical dialkylthioether or a symmetrical dialkylether. Initially pure thioether solutions were then changed to nearly pure solutions of the identical chain-length ether, and vice versa. The direct application of a pure solution of long-chain symmetrical ethers onto graphite produced a lamellate monolayer within which the individual molecular axes were oriented at an angle of approximately 65 degrees to the lamellar axes. In contrast, a pure solution of long-chain symmetrical thioethers on graphite produced a monolayer within which the molecular axes were oriented perpendicular to the lamellar axes. When ethers were gradually added to solutions overlying pure thioether monolayers, the ethers substituted into the existing monolayer structure. Thus, the ether molecules could be forced to orient in the perpendicular thioether-like manner through the use of a thioether template monolayer. Continued addition of ethers to the solution ultimately produced a nearly pure ether monolayer that retained the orientation of the thioether monolayer template. However, a monolayer of thioether molecules formed by gradual substitution into an ether monolayer did not retain the 65 degrees orientation typical of dialkylethers, but exhibited the 90 degrees orientation typical of dialkylthioether monolayers. The thioethers and ethers were easily distinguished in images of mixed monolayers, allowing both an analysis of the distribution of the molecules within the mixed monolayers and a comparison of the monolayer compositions with those of the overlying solutions. Substitution of molecules into the template monolayer did not proceed randomly; instead, a molecule within a monolayer was more likely to be replaced by a molecule in the overlying solution if it was located next to a molecule that had already been replaced.  相似文献   

19.
The use of highly brilliant synchrotron light sources in the middle of the 1980s for X-ray diffraction has revolutionized the research of condensed monolayers. Since then, monolayers gained popularity as convenient quasi two-dimensional model systems widely used in biophysics and material science. This review focuses on structures observed in one-component phospholipid monolayers used as simplified two-dimensional models of biological membranes. In a monolayer system the phase transitions can be easily triggered at constant temperature by increasing the packing density of the lipids by compression. Simultaneously the monolayer structure changes are followed in situ by grazing incidence X-ray diffraction. Competing interactions between the different parts of the molecule are responsible for the different monolayer structures. These forces can be modified by chemical variations of the hydrophobic chain region, of the hydrophilic head group region or of the interfacial region between chains and head groups. Modifications of monolayer structures triggered by changes of the chemical structure of double-chain phospholipids are highlighted in this paper.  相似文献   

20.
Molecular dynamics simulations of monolayers of surfactant mixtures at the air/water interface were performed where the binary mixture was composed of sodium dodecyl sulfate (SDS) and dodecanol molecules. At the same ratio of SDS and dodecanol molecules, two monolayer mixtures were prepared. In the first monolayer, all the dodecanol molecules were placed together in the center of the simulation box, whereas in the second monolayer, those molecules were uniformly distributed in the surface area in such a way that they were far from each other. Simulations of both systems indicate that the dodecanol tails in the first monolayer are straighter and more ordered than those in the second monolayer. From the present results, we observed new insights of how the different molecules should array or distribute at the interface in real systems. Finally, studies of the interfacial water around the different surfactants were also analyzed, showing that they are closer to the polar headgroups of dodecanol than to the SDS headgroups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号