首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influences of two welding processes, namely, shielded metal arc welding (SMAW) and flux cored arc welding (FCAW), on fatigue life of cruciform joints containing lack of penetration (LOP) defects have been analyzed by using the strain energy density factor (SEDF) approach. Load carrying cruciform joints were fabricated from ASTM 517 ‘F’ grade steel. Fatigue crack growth experiments were carried out in a mechanical resonance vertical pulsator (SCHENCK 200 kN capacity) with a frequency of 30 Hz under constant amplitude loading (R=0). It was found that the fatigue lives of the cruciform joints fabricated by SMAW process were relatively higher than the FCAW counterpart. Moreover, fracture mechanics equations have been developed to predict the fatigue life of the cruciform joints fabricated by the above-mentioned two processes.  相似文献   

2.
The effect of weld size on fatigue crack growth behaviour of cruciform joints containing lack of penetration defect has been analysed by using the strain energy density factor concept. Load carrying cruciform joints were fabricated from ASTM 517‘F' grade steel. Fatigue crack growth experiments were carried out in a mechanical resonance vertical pulsator (SCHENCK 200 kN capacity) with a frequency of 30 Hz under constant amplitude loading (R=0). It was found that the crack growth rates were relatively lower in the larger welds fabricated by multipass welding technique than the smaller welds fabricated by the single pass welding technique.  相似文献   

3.
Three welding procedures commonly used to rebuild worn shafts in sugar cane mills were analyzed: two processes of submerged arc welding and one of flux cored arc welding. Crack tip opening displacement for the welding was determined according to ASTM E 1290 standard. The fracture surface and microstructure of the samples were characterized using scanning electron microscopy and optical microscopy, respectively. The fracture parameter CTOD was correlated with the fracture surface and microstructures. The single deposit of FCAW process and the outer weld deposits of SAW process present acicular and blocky ferrite and non-metallic inclusions with spherical shape distributed randomly in the welding. The inner deposits for SAW process show equiaxed ferrite and pearlite with fine inclusions. Welding material B-MA 1 presented the highest CTODc with 0.2115 mm, followed by A-MA 2 with 0.1672 mm and A-MA 1 with 0.1238 mm. Each presented ductile fracture surfaces characterized by spherical dimples, microvoids nucleated in inclusions. Deposits B-MA2 and C-MA 1 presented lower CTODc, unstable crack growth and brittle fractures, characterized by intergranular failures due to fine inclusions in the grain boundaries.  相似文献   

4.
Fatigue crack growth studies in rail steels and associated weld metal have shown that (a) deformed rail steel exhibited fatigue crack growth rates that are slightly faster than undeformed rail steel and (b) weld metal growth data are appreciably faster than rail steel growth results and exhibit growth rate plateaux that reside above the upper bound reported for rail steel fatigue crack growth.In rail steel microstructures at low ΔK levels fatigue crack extension occurred by a ductile striated growth mechanism. However at Kmax values approaching 40 MPa √m transgranular cleavage facets initially formed and their incidence increased with Kmax until final fast fracture. The average cleavage facet size agreed well with pearlite nodule dimensions of 60–100 μm.The weld metal microstructure was much coarser than the rail steel and contained highly directional columnar grain growth. At all ΔK levels the dominant fracture mode was transgranular cleavage containing small isolated regions of ductile striated fatigue crack growth. The cleavage facet size varied from 150 to 600 μm; such a large variation was explained by the fact that in general crack extension tended to occur in association with the proeutectoid ferrite phase.  相似文献   

5.
The fatigue life of a manual metal arc welded cruciform joint failing from a root lack of the penetration region is estimated by the application of crack growth relations. A two-parameter relation was used. The initiation life and propagation life of the joint were taken into account to obtain the total fatigue life of the joint from the crack growth parameters. To test the accuracy of the method, the predicted data was compared with the experimental data for a C---Mn type steel welded joints. The results were in good agreement with the experimental data.  相似文献   

6.
Results are presented on fatigue crack growth of weld joints made of C---Mn structural steel plates in both air and seawater. Tests were conducted to identify the behavior at different locations of the joints as the frequency, R-ratio and electrochemical potential are varied. Residual stresses in specimens with welds are evaluated to analyse the fatigue crack growth behavior. Satisfactory predictions are obtained by accounting for residual stresses and crack closure.  相似文献   

7.
Fatigue tests on notched steel plates reinforced by composite patch showed that the application of carbon fiber reinforced polymers (CFRP) strips with pretension of the overlays prior to bonding. This resulted in a significant amount of additional fatigue life. In particular, the pre-tension produces a compressive field in the steel plate which reduces the stress ratio that enhances crack growth retardation. The fatigue crack propagation rate is postulated to be a function of the effective strain energy density factor range. Fatigue crack growth data showed that standard crack growth retardation model cannot be used to evaluate the minimum effective stress. Hence, an ad hoc plasticity model is introduced and validated using experimental results. The proposed technique is an extension of the well know Newman’s model. The bridging effect due to the reinforcing strips is analytically modeled in order to estimate the reduction of crack opening displacement and finally the magnification of the crack growth retardation. Numerical and experimental results match well and show a significant influence of the pre-tension level on the expected fatigue crack growth rate of a reinforced steel plate.  相似文献   

8.
It is envisaged that super duplex stainless steels, as currently used in the offshore oil and gas industries, will find application in the emergent renewable energy sector in areas such as offshore wind, wave and tidal electricity/hydrogen generation. Such applications typically involve engineering components experiencing fluctuating loads. Sub-critical flaws inherent in welded joints are ideal sites for crack initiation and subsequent propagation leading to fast fracture. The current paper investigates the fatigue performance of two Zeron 100 weld metals in a benign environment (laboratory air). The effects of residual stresses and misalignment inherent from the welding process are also considered. The crack propagation threshold and the intrinsic crack propagation resistance of both weld metals was found to be similar to that of the base metal. However, the fracture toughness of the base metal was superior to the GTA weld metal, which was in turn better than the SMA weld metal.  相似文献   

9.
Very high cycle fatigue (VHCF) behaviors of bridge steel (Q345) welded joints were investigated using an ultrasonic fatigue test system at room temperature with a stress ratio R = ?1. The results show that the fatigue strength of welded joints is dropped by an average of 60% comparing to the base metal and the fatigue failure still occurred beyond 107 cycles. The fatigue fracture of welded joints in the low cycle regime generally occurred at the solder while at the heat-affected zone (HAZ) in the very high cycle regime. The fatigue fracture surface was analyzed with scanning electron microscopy (SEM), showing welding defects such as pore, micro-crack and inclusion were the main factors on decreasing the fatigue properties of welded joints. The effect of welding defects on the fatigue behaviors of welded joints was discussed in terms of experimental results and finite element simulations.  相似文献   

10.
Fatigue crack growth behavior of in-plane gusset welded joints is studied using the strain energy density factor approach. Fatigue tests were performed in order to estimate fatigue strength under tension. Fatigue crack growth analysis was carried out to show the effects of the initial crack shape, the initial crack length, and the stress ratio on the crack types of in-plane gusset welded joints. The assumed crack types were edge crack, semi-elliptical crack, and corner crack. Fatigue crack growth parameters were obtained from crack growth curves assuming constant crack shapes for the given crack types. The results of analysis for the assumed crack types agreed well with the experimental data. The fatigue life did not change as initial crack shape varied for a given initial crack length.  相似文献   

11.
焊趾表面裂纹的形态发展曲线与疲劳寿命预测   总被引:4,自引:0,他引:4  
以作者建立的焊地椭圆表面裂纹应力强度因子数据库以及复杂应力场中焊践半随圆表面裂纹前缘应力强度因子分布计算的基本模式法为基础上,给出了复杂应力场中焊践表面表纹在疲劳扩展过程中形态变化规律及寿命的工程分析方法。  相似文献   

12.
16Mn钢在不同条件下的疲劳行为研究   总被引:1,自引:0,他引:1  
对截面为3 mm×3mm的16Mn钢试件在空气和3.5%NaCl溶液中分别进行疲劳试验,获得了S-N曲线,并对疲劳试样表面和断口形貌进行了观察.结果表明:与空气相比,3.5%NaCl腐蚀溶液使16Mn钢的疲劳强度显著降低;在空气中疲劳试样只有一个萌生于试样表面基体的裂纹源,而在3.5%NaCl溶液中一般有多个裂纹源,而...  相似文献   

13.
Fatigue behaviour of FSW and MIG weldments for two aluminium alloys   总被引:1,自引:0,他引:1  
The increasing use of aluminium alloys in transportation, such as railways, shipbuilding and aeronautics, calls for more efficient and reliable welding processes that would require more in depth understanding of fatigue failure. The objective of this work focuses on the contrasting difference of fatigue behaviour of joints made from the traditional process of metal inert gas (MIG) welding, and the emerging process of friction stir welding (FSW). Effort is made to relate the macroscopic mechanical behaviour to the microstructural feature of the weldments.  相似文献   

14.
曾政  苗张木  吴南 《力学季刊》2016,37(4):755-762
对于裂纹尖端张开位移(CTOD)试验,焊缝试样中预制疲劳裂纹前沿平直度直接影响了试样制备的合格率,是试验的关键难题之一.试验中常对试样进行预处理以提高裂纹前沿平直度,但由此也使试验结果与实际情况产生一定差异.本文深入研究规范BS7448: Part2中对焊缝试样取样方向的规定,对表面开缺口试样裂纹尖端焊接残余应力进行分析,运用大型有限元软件ANSYS模拟90mm厚钢板焊接过程,求解了横向残余应力沿板厚方向及焊缝方向的分布规律,研究出横向残余应力分布是影响焊缝试样预制裂纹前沿平直度的主要原因,并通过试验进行验证.试验结果表明,表面开缺口试样可不经过局部韧带压缩等预处理而得到合格的裂纹前沿平直度,试验不改变原焊缝残余应力,可测得更加接近焊缝实际情况的CTOD韧度值,给CTOD试验中合理选取焊缝试样取样方向提供了新思路.  相似文献   

15.
采用四步法计算了考虑循环载荷中压应力影响的正交异性钢桥面板的肋-面板焊缝表面裂纹扩展。第一步是基于正交异性钢桥面板的疲劳分析模型,计算肋-面板焊缝处的应力,第二步是通过肋-面板焊缝的三维局部模型,用Schwartz-Neumann交替法计算焊缝表面裂纹的应力强度因子分布,第三步是用二维断裂力学模型和增量塑性损伤模型,计算循环载荷中的压应力对裂纹扩展的影响,第四步是用第二步中的三维裂纹分析结果和第三步中的二维断裂力学模型得到的裂纹扩展公式,计算钢桥面板的肋-面板焊缝表面裂纹扩展。计算结果表明,对应于正交异性钢桥面板肋-面板焊缝处的循环应力,本文所用模型的裂纹尖端反向塑性区导致裂纹扩展率增加50%以上。研究结果为正交异性钢桥面板肋-面板焊缝裂纹的疲劳寿命分析提供了研究基础。  相似文献   

16.
An investigation on fatigue crack propagation under mode I loading has been performed. Fatigue crack growth data in the case of plane strain mode I have been obtained by performing experiments on compact tension specimens of 4340 steel for increasing ΔKI, decreasing ΔKI, and constant ΔKI loading conditions. Fatigue crack extension predictions have been obtained for Khan's proposed equation [1989], together with the widely used and [1963] and [1967] equations. Khan's equation overcomes the drawbacks associated with the Paris and Forman equations, such as the inclusion of all the three stages of fatigue crack propagation, the nondimensionality of the constant, “C”, and also the accuracy in life prediction. Within the context of Linear Elastic Fracture Mechanics and the types of loading performed at the crack tip, it has been shown that Khan's model can accurately predict the crack growth data from near threshold value to the unstable fracture; these predicted values are much more accurate than those from the Paris and Forman equations.  相似文献   

17.
在相同的试验条件下,对16MnR压力容器用钢焊接接头焊缝区、热影响区和母材区,分别做了15 根试样的低周疲劳试验,获得了三个区的低周疲劳寿命分布与裂纹扩展规律。试验表明,Paris公式中的两个参数m 和c 分别服从正态分布和对数正态分布,m 和log c 呈现统计线性关系。根据文中的统计结果,采用蒙特卡洛法对给定的两个裂纹长度间的扩展寿命进行了预测,预测结果与试验结果符合良好。文中还对焊接接头三个区的低周疲劳寿命进行了统计分析,获得了相应的概率密度函数,初步提出了整个焊接接头的可靠性最弱环模型。  相似文献   

18.
Fatigue growth behavior of out-of-plane gusset welded joints is studied using the strain energy density factor approach. Fatigue tests on two types of specimens with curvatures of ρ = 0 and ρ = 30 were performed in order to estimate fatigue strength under tension. Fatigue crack growth analysis is carried out to show the effects of initial crack shape, initial crack length and stress ratio. Fatigue crack growth parameters were obtained from crack growth curves assuming constant crack shapes. The results of analysis for the assumed crack shapes agreed well with the experimental data. Fatigue propagation life of the ρ = 30 specimen was larger than that of the ρ = 0 specimen.  相似文献   

19.
Prestressed composite patch bonded on cracked steel section is a promising technique to reinforce cracked details or to prevent fatigue cracking on steel structural elements. It introduces compressive stresses that produce crack closure effect. Moreover, it modifies the crack geometry by bridging the crack lips and reduces the stress range at crack tip. Fatigue tests were performed on notched steel plate reinforced by CFRP strips as a step toward the validation of crack patching for fatigue life extension of riveted steel bridges. A debond crack in the adhesive–plate interface was observed by optical technique. Debond crack total strain energy release rate is computed by the modified virtual crack closure technique. A parametric analysis is performed in order to investigate the influence of some design parameters such as the composite patch Young’s modulus, the adhesive thickness and the pretension level on the adhesive–plate interface debond.  相似文献   

20.
以Donahue等提出的疲劳裂纹扩展速率计算模型为基础,通过引入形状系数、张开比和残余应力等参数,建立了适用于焊接结构的疲劳裂纹扩展速率计算模型,分析了多种因素对焊接结构疲劳裂纹扩展速率的影响规律。结果表明,焊板厚度和焊缝余高的变化均会对焊接结构疲劳裂纹的扩展速率产生影响,在对焊接结构表面形状进行设计时应保有一定的焊缝余高;有效应力比的增大会降低焊接结构疲劳裂纹的扩展速率,且裂纹深度的变化不会改变有效应力比对焊接结构疲劳裂纹扩展速率的影响;残余应力的增大会提高焊接结构疲劳裂纹的扩展速率,且残余应力对疲劳裂纹扩展速率的促进作用随着裂纹深度的增加而增大,在对焊接结构的疲劳性能进行设计时须考虑残余应力对结构性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号