首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
现代样品体系一般复杂,采用一般的分析方法对其分离富集难度较大。分子印迹聚合物的高选择性使其在复杂体系样品的净化富集中具有很强的应用潜力,本文对分子印迹聚合物作为固相萃取剂及其在色谱样品前处理方面的应用进行了综述和展望,主要包括分子印迹中空纤维萃取、分子印迹固相萃取柱萃取、分子印迹整体柱萃取、分子印迹膜萃取、搅拌棒吸附萃取、磁性材料萃取等技术,同时总结了分子印迹固相萃取技术在食品分析、环境分析以及药物与生物分析等方面的应用进展。  相似文献   

2.
分子印迹样品前处理技术的研究进展   总被引:7,自引:0,他引:7  
样品前处理是分析过程的关键环节,直接影响着分析结果的准确度和精密度.分子印迹聚合物具有特异性识别能力,能从复杂样品中选择性分离富集目标物,在复杂样品前处理领域中有重要的发展潜力和应用前景.本文综述了近年来分子印迹样品前处理技术的研究进展,包括分子印迹固相萃取、分子印迹固相微萃取、分子印迹膜萃取等样品前处理技术.  相似文献   

3.
分子印迹聚合物具有抗恶劣环境、选择性高、稳定性好等特点,广泛应用于复杂样品的前处理。采用结构类似物作为替代模板分子,可以解决分子印迹聚合物制备时目标物溶解性差的问题,替代模板分子印迹聚合物不仅对目标分析物具有选择性识别能力,还可以避免模板泄露对痕量分析造成的影响。本文综述了替代模板分子印迹技术在样品前处理中的应用进展,包括替代模板分子印迹技术在固相萃取、固相微萃取、色谱固定相、基质固相分散萃取中的应用,最后对替代模板分子印迹技术在未来的样品前处理中的研究进行了展望。  相似文献   

4.
分子印迹聚合物固相萃取研究进展   总被引:2,自引:0,他引:2  
李金花  温莹莹  陈令新 《色谱》2013,31(3):181-184
对最新报道的分子印迹聚合物作为固相萃取剂及其在色谱样品前处理方面的应用进行综述和展望,主要包括固相萃取、基质固相分散萃取、固相微萃取、搅拌棒吸附萃取和磁性材料萃取,同时总结了分子印迹聚合物制备技术面临的挑战和问题,提出了可能的解决方案。  相似文献   

5.
分子印迹技术在固相萃取中的应用   总被引:2,自引:0,他引:2  
对2000-2010年间国内外文献报道的有关分子印迹技术在固相萃取中的应用进行了综述。主要内容包括分子印迹技术和固相萃取技术的原理、分子印迹聚合物的制备和分子印迹-固相萃取的两种操作模式,着重介绍了分子印迹-固相萃取在环境、食品、生物医药等领域中的应用(引用文献32篇)。  相似文献   

6.
陈方方  师彦平 《色谱》2013,31(7):626-633
天然产物体系复杂,尤其是一些活性成分含量较低,采用一般的方法对其进行分离富集难度较大。分子印迹聚合物具有良好的亲和性和专一的选择性,将分子印迹固相萃取技术应用于天然药物资源样品前处理过程,能够选择性地分离富集复杂基质中的目标成分。本文对近几年分子印迹固相萃取技术在天然产物有效成分分离分析中的应用进行了总结,分析物包括黄酮类、多元酚类、生物碱类、有机酸类、苯丙素类、萜类以及其他一些类型的生物活性成分。  相似文献   

7.
一种高选择性固相萃取吸附剂--分子印迹聚合物   总被引:3,自引:0,他引:3  
固相萃取是对样品富集、分离的一种有效方法,因而得到广泛应用.分子印迹是近些年发展起来的新技术,由于分子印迹聚合物具有高的选择性,被应用于环境、药物、生物、食品等样品的分析.本文介绍了固相萃取和分子印迹技术的原理以及两者结合用于固相萃取的过程,对近10年来国内外分子印迹聚合物应用于固相萃取的研究工作进行了总结和评述,并对其将来的发展进行了展望.  相似文献   

8.
分子印迹微萃取技术的研究进展   总被引:1,自引:0,他引:1  
张凯歌  胡玉玲  胡玉斐  李攻科 《色谱》2012,30(12):1220-1228
微萃取技术是一种将分析物高效萃取富集于微体积的聚合物或有机溶剂中,集采样、萃取、浓缩、进样于一体的无(少)溶剂、易于与其他技术在线联用的样品前处理方法。分子印迹聚合物是一种具有强大分子识别功能的材料,具有高效的选择特异性,可从复杂样品中选择性分离富集目标分析物,在微萃取技术中得到了广泛的应用。本文综述了近年来分子印迹微萃取技术的研究进展,包括分子印迹固相微萃取、分子印迹搅拌棒吸附萃取、分子印迹磁性微球萃取等微萃取技术。共引用文献75篇。  相似文献   

9.
分子印迹固相萃取及其应用   总被引:22,自引:19,他引:22  
系统地介绍了分子印迹固相萃取的原理、特点、发展现状及其发展趋势,并重点对分子印迹固相萃取技术在环境和生物样品前处理中的应用作了较详细的综述。共引用文献100篇。  相似文献   

10.
固相萃取技术在食品痕量残留和污染分析中的应用   总被引:3,自引:0,他引:3  
Li G  Ma G 《色谱》2011,29(7):606-612
食品痕量残留和污染分析中,样品的前处理极为重要,也是其难点所在。由于食品和农产品样品的多样性和复杂性,目前还没有一种前处理技术能够适合所有情况下的所有样品。本文对近年来发展起来的新型固相萃取技术如固相微萃取、搅拌棒吸附萃取、基质固相分散萃取、分子印迹固相萃取、免疫亲和固相萃取、整体柱固相萃取、碳纳米管固相萃取等在食品痕量残留和污染分析中的应用进行了综述,对未来的发展前景作了展望。  相似文献   

11.
Different kinds of deep eutectic solvents based on choline chloride and ionic liquids based on 1‐methylimidazole were used to modify hybrid molecularly imprinted polymers with the monomer γ‐aminopropyltriethoxysilane‐methacrylic and three templates (rutin, scoparone, and quercetin). The materials were adopted as solid‐phase extraction packing agents, and were characterized by FTIR spectroscopy and field emission scanning electron microscopy. The hybrid molecularly imprinted polymers modified by deep eutectic solvents had high recoveries and a strong recognition of rutin, scoparone, and quercetin in Herba Artemisiae Scopariae than those modified by ionic liquids. In the procedure of solid‐phase extraction, deep eutectic solvents‐2‐hybrid molecularly imprinted polymers were obtained with the best recoveries with rutin (92.27%), scoparone (87.51%), and quercetin (80.02%), and the actual extraction yields of rutin (5.6 mg/g), scoparone (2.3 mg/g), and quercetin (3.4 mg/g). Overall, the proposed approach with the high affinity of hybrid molecularly imprinted polymers might offer a novel method for the purification of complex samples.  相似文献   

12.
Ginsenoside Rg1 is a valuable bioactive molecule but its high polarity and low concentration in complex mixtures makes it a challenge to separate Ginsenoside Rg1 from other saponins with similar structures, resulting in low extraction efficiency. The successful development of effective Rg1 molecularly imprinted polymers that exhibit high selectivity and adsorption may offer an improved method for the enrichment of active compounds. In this work, molecularly imprinted polymers were prepared with two different methods, precipitation polymerization or surface imprinted polymerization. Comparison of the adsorption abilities showed higher adsorption of the surface molecularly imprinted polymers prepared by surface imprinted polymerization, 46.80 mg/g, compared to the 27.74 mg/g observed for the molecularly imprinted polymers prepared by precipitation polymerization. Therefore, for higher adsorption of the highly polar Rg1, surface imprinted polymerization is a superior technique to make Rg1 molecularly imprinted polymers. The prepared surface molecularly imprinted polymers were tested as a solid‐phase extraction column to directionally enrich Rg1 and its analogues from ginseng tea and total ginseng extracts. The column with surface molecularly imprinted polymers showed higher enrichment efficiency and better selectivity than a C18 solid‐phase extraction column. Overall, a new, innovative method was developed to efficiently enrich high‐polarity bioactive molecules present at low concentrations in complex matrices.  相似文献   

13.
New magnetic molecularly imprinted polymers with two templates were fabricated for the recognition of polysaccharides (fucoidan and alginic acid) from seaweed by magnetic solid‐phase extraction, and the materials were modified by seven types of deep eutectic solvents. It was found that the deep eutectic solvents magnetic molecularly imprinted polymers showed stronger recognition and higher recoveries for fucoidan and alginic acid than magnetic molecularly imprinted polymers, and the deep eutectic solvents‐4‐magnetic molecularly imprinted polymers had the best effects. The practical recovery of the two polysaccharides (fucoidan and alginic acid) purified with deep eutectic solvents‐4‐magnetic molecular imprinted polymers in seaweed under the optimal conditions were 89.87, and 92.0%, respectively, and the actual amounts extracted were 20.6 and 18.7 μg/g, respectively. To sum up, the developed method proved to be a novel and promising method for the recognition of complex polysaccharide samples from seaweed.  相似文献   

14.
A novel l‐ phenylalanine molecularly imprinted solid‐phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion‐pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid‐phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l‐ phenylalanine. Under the optimized conditions of the procedure, an analytical method for l‐ phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse‐phase silica gel, the obtained molecularly imprinted polymer as an solid‐phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L?1) for the isolation of l‐ phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion‐pair dummy template imprinting is effective for preparing selective solid‐phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples.  相似文献   

15.
Sample pretreatment is essential for the analysis of complicated real samples due to their complex matrices and low analyte concentrations. Among all sample pretreatment methods, solid‐phase extraction is arguably the most frequently used one. However, the majority of available solid‐phase extraction adsorbents suffer from limited selectivity. Molecularly imprinted polymers are a type of tailor‐made artificial antibodies and receptors with specific recognition sites for target molecules. Using molecularly imprinted polymers instead of conventional adsorbents can greatly improve the selectivity of solid‐phase extraction, and therefore molecularly imprinted polymer‐based solid‐phase extraction has been widely applied to separation, clean up and/or preconcentration of target analytes in various kinds of real samples. In this article, after a brief introduction, the recent developments and applications of molecularly imprinted polymer‐based solid‐phase extraction for determination of different analytes in complicated real samples during the 2015‐2020 are reviewed systematically, including the solid‐phase extraction modes, molecularly imprinted adsorbent types and their preparations, and the practical applications of solid‐phase extraction to various real samples (environmental, food, biological, and pharmaceutical samples). Finally, the challenges and opportunities of using molecularly imprinted polymer‐based solid‐phase extraction for real sample analysis are discussed.  相似文献   

16.
Molecular imprinting technology is a well-established technique for the obtainment of tailor-made polymers, so-called molecularly imprinted polymers, with a predetermined selectivity towards a target analyte or structurally related compounds. Accordingly, molecularly imprinted polymers are considered excellent materials for sample preparation providing unprecedented selectivity to analytical methods. However, the use of molecularly imprinted polymers in sample preparation still presents some shortcomings derived from the synthesis procedure itself limiting its general applicability. In this regard, molecularly imprinted polymers use to display binding sites heterogeneity and slow diffusion mass transfer of analytes to the imprinted sites affecting their overall performance. Besides, the performance of molecularly imprinted polymers in organic solvents is excellent, but their selective binding ability in aqueous media is considerably reduced. Accordingly, the present review pretends to provide an updated overview of the recent advances and trends of molecularly imprinted polymers-based extraction, focusing on those strategies proposed for the improvement of mass transfer and selective recognition in aqueous media. Besides, with the progressive implementation of Green Chemistry principles, the different steps and strategies for the preparation of molecularly imprinted polymers are reviewed from a green perspective.  相似文献   

17.
A selective extraction technique based on the combination of membrane assisted solvent extraction and molecularly imprinted solid phase extraction for triazine herbicides in food samples was developed. Simazine, atrazine, prometon, terbumeton, terbuthylazine and prometryn were extracted from aqueous food samples into a hydrophobic polypropylene membrane bag containing 1000μL of toluene as the acceptor phase along with 100mg of MIP particles. In the acceptor phase, the compounds were re-extracted onto MIP particles. The extraction technique was optimised for the type of organic acceptor solvent, amount of molecularly imprinted polymers particles in the organic acceptor phase, extraction time and addition of salt. Toluene as the acceptor phase was found to give higher triazine binding onto MIP particles compared to hexane and cyclohexane. Extraction time of 120min and 100mg of MIP were found to be optimum parameters. Addition of salt increased the extraction efficiency for more polar triazines. The selectivity of the technique was demonstrated by extracting spiked cow pea and corn extracts where clean chromatograms were obtained compared to only membrane assisted solvent extraction or only molecularly imprinted solid phase extraction. The study revealed that this combination may be a simple way of selectively extracting compounds in complex samples.  相似文献   

18.
Novel molecularly imprinted chitosan microspheres were prepared on the surface of magnetic graphene oxide, with deep eutectic solvents both as a functional monomer and template. The prepared molecularly imprinted chitosan microspheres‐magnetic graphene oxide was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, Brunauer‐Emmett‐Teller surface area, thermogravimetric analysis were subsequently combined with solid‐phase micro‐extraction for simultaneous separation and enrichment of the extraction of chlorophenols from environmental water. Factors affecting the extraction efficiency of chlorophenols were optimized using response surface methodology. The actual extraction capacities under the optimal conditions (liquid to solid ratio = 3, cycles of adsorption/desorption = 5, 40°C extraction temperature, and extraction time for 35 min) were 86.90 mg/g. Compared to the traditional materials, the molecularly imprinted chitosan microspheres‐magnetic graphene oxide produced higher selectivity and extraction capacity.  相似文献   

19.
Magnetic molecularly imprinted polymers have attracted significant interest because of their multifunctionality of selective recognition of target molecules and rapid magnetic response. In this contribution, magnetic molecularly imprinted polymers were synthesized via surface‐initiated reversible addition addition‐fragmentation chain transfer polymerization using diethylstilbestrol as the template for the enrichment of synthetic estrogens. The uniform imprinted surface layer and the magnetic property of the magnetic molecularly imprinted polymers favored a fast binding kinetics and rapid analysis of target molecules. The static and selective binding experiments demonstrated a desirable adsorption capacity and good selectivity of the magnetic molecularly imprinted polymers in comparison to magnetic non‐molecularly imprinted polymers. Accordingly, a corresponding analytical method was developed in which magnetic molecularly imprinted polymers were employed as magnetic solid‐phase extraction materials for the concentration and determination of four synthetic estrogens (diethylstilbestrol, hexestrol, dienestrol, and bisphenol A) in fish pond water. The recoveries of these synthetic estrogens in spiked fish pond water samples ranged from 61.2 to 99.1% with a relative standard deviation of lower than 6.3%. This study provides a versatile approach to prepare well‐defined magnetic molecularly imprinted polymers sorbents for the analysis of synthetic estrogens in water solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号