首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report unusual cooling field dependence of the exchange bias in oxide-coated cobalt nanoparticles embedded within the nanopores of a carbon matrix. The size-distribution of the nanoparticles and the exchange bias coupling observed up to about 200 K between the Co-oxide shell (~3-4 nm) and the ferromagnetic Co-cores (~4-6 nm) are the key to understand the magnetic properties of this system. The estimated values of the effective anisotropy constant and saturation magnetization obtained from the fit of the zero-field cooling and field cooling magnetization vs. temperature curves agree quite well with those of the bulk fcc-Co.  相似文献   

2.
A magneto-optical study has been undertaken of the mixed-valence single-molecule magnet [Mn(IV)(4)Mn(III)(8)O(12)L(16)] in which the ligands, L, are acetate (Mn(12)Ac) or the long-chain carboxylic acid, C(14)H(29)COOH (Mn(12)C(15)), that confers better solubility in organic solvents. Thin polymer films of these compounds in poly(methyl methacrylate) (PMM) have been cast by solvent evaporation to provide samples suitable for variable-temperature and field magnetic circular dichroism (MCD) studies. The absorption spectra in isotropic light are featureless, whereas the low-temperature MCD spectra contain resolved peaks, both positive and negative. MCD magnetization curves measured at temperatures above 4.2 K have established a ground-state spin of S = 10 and an axial zero-field parameter, D, of -0.61 K, similar to that determined for single crystals of Mn(12)Ac. By studying at a variety of optical wavelengths, the polarization ratios of the optical transitions relative to the unique axis of the zero-field distortion have been determined. The MCD magnetization curves measured at 4.2 K between 0 and 5 T for the case of Mn(12)C(15) in the PMM film can be fitted only on the assumption of nonrandom distribution of molecular z-axes arising from stresses in the polymer film during the process of casting. MCD-detected hysteresis curves measured in both frozen solution and PMM films, below the blocking temperature of approximately 3 K, show a high retention of spin polarization after reduction to zero of a polarizing magnetic field. This generates intense zero-field circular dichroism (CD) with maximum intensity for xy-polarized optical transitions whose sign depends on the direction of the original polarizing field. The optical polarization and the selection rules for MCD select a subset of molecular orientations with respect to the direction of field. Thus, the magnetically induced CD provides a highly sensitive and rapid optical method of reading the spin polarization of molecular magnets.  相似文献   

3.
Monodisperse magnetic composite particles (MCP) were prepared and characterized for a study of magnetic field-responsive fluids. Magnetic composite particles used are iron oxide-coated polymer composite particles, which were synthesized through in situ coating of iron oxide onto pre-existing polymer particles by the reduction of ferrous fluids. For a uniform and bulk coating of iron oxide, the porous structure was introduced into the substrate polymer particles through a two-step seeded polymerization method. Moreover, surface cyano-functionality was born from acrylonitrile unit of substrate polymer and it played an important role in obtaining successful uniform coating. The structure of the composite particle was analyzed by using a thermo gravimetric analysis (TGA) and a X-ray diffraction (XRD) analysis. The magnetization property of the particle was also observed. Then, the rheological properties of monodisperse magnetorheological (MR) suspensions of magnetic composite particles were examined under a magnetic field using a parallel-plate type commercial rheometer. From the rheological measurements, it was found that MR properties of the magnetic composite suspensions are dependent on the iron oxide content and the fluid composition.  相似文献   

4.
We fabricated self-standing films of cellulose nanocrystals (CNC) and electrospun composite fibers with CNC and polyvinyl alcohol both with magnetic properties arising from cobalt iron oxide nanoparticles in the CNC matrix. Aqueous dispersions of cobalt-iron oxide nanoparticles (10–80 nm diameter) and CNCs (ca. 150 nm length) were used as precursor systems for the films and composite fibers. The properties of the hybrid material were determined by electron and atomic force microscopy, X-ray diffraction, thermogravimetry and magnetometry. The CNC-inorganic system was ferromagnetic, with a saturation magnetization of ca. 20 emu g?1 of the magnetic phase. We demonstrate potential applications of the precursor dispersions, including magnetic fluid hyperthermia and highlight possible uses of the CNC-based magneto-responsive systems in biomedical and magneto-optical components.  相似文献   

5.
Composite materials which consist of ferro- or ferrimagnetic fine particles in a glass matrix are expected to have a large residual magnetization and coercive force because of their fine magnetic domain structure, and has potential for superior magneto-optical properties compared with single or polycrystalline materials. In this study, the sodium borosilicate (NBS) glass containing Bi-substituted yttrium iron garnet (Bi x Y3–x Fe5O12: BiYIG) fine particles, which show a superior magneto-optical effect, was prepared by the sol-gel method. BiYIG fine particles were stable in NBS gel-glass matrix during densification because the sintering temperature (580°C) of NBS gel was low enough to avoid pyrolysis of BiYIG and the reaction between BiYIG fine particles and the matrix. The Faraday rotation angle spectrum of the composite after deducting the contribution of the NBS glass matrix was intermediate between the reported ones of YIG and Bi0.25YIG polycrystalline thin films. The change of the Faraday rotation angles of the composite with imposing magnetic field showed a hysteresis loop. It was in good agreement with that of the magnetization curve of the composite.  相似文献   

6.
马利 《高分子科学》2009,27(4):487-492
Conductive polyaniline(PAn-_M and PAn-_O) doped with dodecylbenzene sulfonic acid(DBSA) was synthesized by using emulsion polymerization method in the presence of a constant magnetic field(0.4 T) and the absence of magnetic field, respectively.The effects of magnetic field on the microscopic morphology and orientation structure of PAn were generally analyzed and characterized by using transmission electron microscope(TEM),X-ray diffraction(XRD) and through the conductivity anisotropy of unit resistance o...  相似文献   

7.
《Mendeleev Communications》2022,32(3):305-307
The iron-based oxypnictide superconductor SmFeAsO0.8F0.2 was synthesized under high pressure and investigated by measuring the dc magnetic susceptibility. The zero-field cooled (ZFC) magnetic susceptibility confirmed the bulk superconductivity of the sample with a critical temperature Tc ≈ 50 K and a significant jump in magnetization at ~4.3 K, usually attributed to the antiferromagnetic ordering of Sm3+ ions in this system. Since the occurrence of the jump depends on the cooling history, our data strongly suggest a spin-glass-like behavior.  相似文献   

8.
The synthesis and structural and magnetic characterization of an S = 6 cyanide-bridged octanuclear FeIII4NiII4 (1) complex is described. Ac susceptibility and mu-SQUID measurements suggest that fast magnetization relaxation is present in zero-field due to quantum tunneling of the ground spin state (QTM) while application of small magnetic fields induces slow relaxation of the magnetization.  相似文献   

9.
Self-assembly generated materials induced by an external magnetic field have attracted considerable interest following the development of nanodevices. However, the fabrication of macroscopic and anisotropic magnetic films at the nanoscale remains a challenge. Here, anisotropic magnetic films are successfully prepared using a solution-based nanowire assembly strategy under a magnetic field. The assembly process is manipulated by changing the thickness of silica shell coated on the surface of magnetic nanowires. The anisotropic magnetic films show highly anisotropic magnetization under different angles of magnetic field and better magnetization properties than that of disordered magnetic films. The well-defined nanowire arrays enable magnetization anisotropic property which may be useful in the magnetic energy conversion technologies and biomedical sciences which lie far beyond those achievable with traditional magnetic materials.  相似文献   

10.
We report the fabrication of La(0.7)Ca(0.3)MnO(3) nanotubes (LCMONTs) with a diameter of about 200 nm, by a modified sol-gel method utilizing nanochannel alumina templates. High resolution transmission electron microscopy confirmed that the obtained LCMONTs are made up of nanoparticles (8-12 nm), which are randomly aligned in the wall of the nanotubes. The strong irreversibility between zero field cooling (ZFC) and field cooling (FC) magnetization curves as well as a cusplike peak in the ZFC curve gives strong support for surface spin glass behavior.  相似文献   

11.
Polypyrrole-polystyrene sulfonic acid (PPy-PSSA) composite films have been electrosynthesized in an aqueous solution of PSSA. The electro-active films exhibit cation exchange during the redox process. Infrared, Raman and energy-dispersive spectroscopic results demonstrated that the polyanion of PSS^- is co-deposited into the PPy matrix and couldn‘t be stripped from the film extensively by dedoping. The doping level together with dipolaron content of the PPy-PSSA composite film increases during electrochemical polymerization process. SEM images revealed that the composite film has smooth and compact morphology and AFM pictures suggested that PPy chains are possibly grown perpendicular to the electrode surface. TGA tests indicated that the composite films has much better thermal stability than that of pure PPy.Furthermore, electrochemical studies showed that the relaxation process at certain holding potential has great effect on the shape of the cyclic voltammetric curves of PPy-PSSA composite film. The composite film exhibits cation and anion exchange during the redox process after undergoing the relaxation step. It is more difficult for divalent anion to enter the polymer matrix than a univalent ion, and a large cation such as (CH3CH2CH2CH2)4N^ cannot be involved in the ion exchange process.  相似文献   

12.
Nanocrystalline films of magnetite have been prepared by a novel sol–gel route in which, a solution of iron (III) nitrate dissolved in ethylene glycol was applied on glass substrates by spin coating. Coating solution showed Newtonian behaviour and viscosity was found as 0.0215 Pa.s. Annealing temperature was selected between 291 and 350 °C by DTA analysis in order to obtain magnetite films. In-plane grazing angle XRD and TEM studies showed that magnetite phase was present upon annealing the films at 300 °C. The films had crack free surfaces and their thicknesses varied between ~10 and 200 nm. UV–Vis spectrum results showed that transmittance of the films increases with decreasing annealing temperature and increasing spinning rate. Up to 96% transmittance was observed between the wavelengths of 900–1,100 nm. Vibrating sample magnetometer measurements indicated that magnetite thin films showed ferromagnetic behavior and the saturation magnetization value was found as ~35 emu/cm3.  相似文献   

13.
Thin films of cobalt-iron cyanide (Co-Fe Prussian blue) have been fabricated by means of the modified Langmuir-Blodgett (LB) method using a smectite clay mineral (montmorillonite). In this combined method, clay LB films play a template role in the formation of the Co-Fe Prussian blue thin layer. The films were revealed to possess a well-organized structure not only in perpendicular directions to the film surface but also in parallel directions to the film surface. The photoinduced electron transfer from the iron ion to the cobalt through the bridging cyanide in the films occurred at low temperature (8 K), similar to that in the bulk Co-Fe Prussian blue. The films clearly exhibited magnetic anisotropy with regards to the direction of the applied magnetic field. Moreover, the photoinduced magnetization effect in the films was also found to be anisotropic.  相似文献   

14.
半导体Si上电沉积Cu-Co颗粒膜及其巨磁电阻效应   总被引:3,自引:0,他引:3  
采用电化学沉积方法在半导体Si上制备Cu-Co金属颗粒膜. XRD测试结果表明制备态的薄膜形成了单相亚稳态面心合金结构, 薄膜经退火后, XRD谱图中出现了析出的纯金属Co的衍射峰, 这表明薄膜在退火过程中发生了相分离. TEM测试结果也进一步证实了磁性的Co颗粒从非磁性的铜基体中析出. 随着退火温度的增加, 颗粒膜巨磁电阻(GMR)效应不断增大, 当退火温度为450 ℃时, Co0.20Cu0.80薄膜的巨磁电阻效应达到最大, 磁阻率为8.21%. 之后, 磁阻率又随退火温度的升高而降低. 退火前后样品磁滞回线的变化表明薄膜中发生了从超顺磁性到铁磁性的转变, 矫顽力、剩余磁化强度和饱和磁化强度均随退火温度的增高而逐渐增大. 超顺磁性颗粒的作用导致了GMR-H与M-H曲线的不同.  相似文献   

15.
Using magnetization measurements and multifrequency high-field electron paramagnetic resonance, the largest zero-field splitting for any individual isolated Mn(II) ion has been found in a polyoxometalate complex, suggesting that the inorganic ligand induces large Ising-type magnetic anisotropy.  相似文献   

16.
Fe–DLC composite film was deposited by a facile electrochemical process via the electrolysis of analytically methanol and Iron (III) 2, 4-pentanedionate under atmospheric pressure. The relative atomic ratio of Fe/C was around 10%, and nano-crystalline iron particles were homogeneously dispersed into the amorphous cross-linked carbon matrix. After doping iron into DLC films, the sp3-hybridized carbon content in DLC composite films increased, and the carbon composite film exhibits a magnetic field up to 12KOe. Moreover, the deposition of Fe–DLC composite film in liquid-phase electrochemical deposition may be followed by an atmospheric pressure plasma deposition (APPD) process.  相似文献   

17.
Suspensions of micrometer-sized iron particles (10 vol %) dispersed in kerosene and stabilized by addition of organoclay particles were prepared. The magnetization curves of these suspensions were measured, and their sedimentation and redispersion behaviors were analyzed as a function of clay concentration by means of optical and rheological methods. Furthermore, their magnetorheological properties were investigated using a controlled rate magnetorheometer and the effect of clay concentration on these properties was also analyzed. These experiments showed that the addition of clay slows down iron particle settling and eases the redispersion of the iron-based suspensions without masking their magnetorheological properties. Two mechanisms were found to be involved in this behavior: (i) the formation of a clay gel network and (ii) the presence of heterogeneous iron-clay adhesion.  相似文献   

18.
The magnetic composite materials that consist of transparent matrix and magnetic fine particles are expected to have large residual magnetization and coercive force because of their fine magnetic domain structure, and also to show magneto-optical effects. Silica gels containing magnetite (Fe3O4) fine particles were prepared by sol-gel method. The magnetic, optical and magneto-optical properties of the composites were investigated by measurements of magnetization curves, UV-visible spectra and Faraday rotation in visible range. The saturation magnetization of the composite was almost as same as that expected from the amount of magnetite fine particles in it. Although the composites had large and broad absorption at around 400 nm, they still maintained their transparency. The origins of decrement of transparency attributed to the optical absorption of magnetite and scattering due to magnetite fine particles. The whole composites showed positive Faraday rotation under external static magnetic field due to the large contribution of diamagnetic silica gel matrix. Magnetite contributed negative Faraday rotation with maximum at around 470–480 nm to the magneto-optical spectra of the composites.  相似文献   

19.
通过化学溶液沉积法在氧化铟锡(ITO)/导电玻璃上生长了BiFeO3多晶薄膜.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱分析仪(XPS)、磁性测量系统(MPMS)和铁电测试仪对样品的结构、形貌、元素价态、铁磁性和铁电性进行研究.结果表明, 薄膜为自取向生长, 具有良好的[101] 生长取向和平整的表面.室温下, 样品呈铁磁性, 沿样品取向方向为易磁化轴方向.铁电测试结果表明, 其饱和电极化强度达到51.3 μC/cm2.  相似文献   

20.
The dicobalt form of the metallohydrolase methionine aminopeptidase from Escherichia coli (CoCo EcMetAP) has an active site with one 5-coordinate Co (II) and a more weakly bound 6-coordinate Co (II). These metal ions are bridged by two carboxylate amino acid side chains and water or hydroxide, potentially enabling magnetic exchange coupling between the metals. We used variable-temperature, variable-field magnetic circular dichroism to determine whether such coupling occurs. CoCo EcMetAP's MCD spectrum shows distinct d-d transitions at 495 and 567 nm caused by 6- and 5-coordinate Co (II), respectively. The magnetization curves for 5- and 6-coordinate Co (II) are very different, indicating that their electronic ground states vary considerably, ruling out any coupling. When the fungal metabolite fumagillin binds to the CoCoEcMetAP, the qualitative MCD spectrum is unchanged; however, VTVH MCD data show that 5- and 6-coordinate Co (II) ions have similarly shaped magnetization curves, indicating that the Co (II) ions now share the same electronic ground state. Fitting the VTVH MCD data to a model in which dimer wave functions are calculated using a spin Hamiltonian with zero-field splitting showed the Co (II) ions to be weakly ferromagnetically coupled, with J = 2.9 cm (-1). Ferromagnetic coupling is unusual for dinuclear Co (II); therefore, to support the CoCoEcMetAP/fumagillin complex results, we also analyzed VTVH MCD data from a matched pair of dinuclear cobalt complexes, 1 and 2. Complex 1 shares the carboxylate and hydroxide-bridged dicobalt(II) structural motif with the active site of CoCo EcMetAP. Complex 2 contains a nearly isostructural Co (II) ion, but the Co (III) is diamagnetic, so any magnetic coupling is switched off, while the spectral features of the Co (II) ion remain. Magnetization data for 1, fitted to the dimer model, showed that the Co (II) ions were weakly ferromagnetically coupled, with J = 1.7 cm (-1). Magnetization data for Co (II) ions in 2, however, reflect loss of magnetic exchange coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号