首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
Density-functional tight-binding molecular dynamics (DFTB/MD) methods were employed to demonstrate single-walled carbon nanotube (SWNT) nucleation resulting from thermal annealing of SiC nanoparticles. SWNT nucleation in this case is preceded by a change of the SiC structure from a crystalline one, to one in which silicon and carbon are segregated. This structural transformation ultimately resulted in the formation of extended polyyne chains on the SiC nanoparticle surface. These polyyne chains subsequently coalesced, forming an extended sp(2)-hybridized carbon cap on the SiC nanoparticle. The kinetics of this process were enhanced significantly at higher temperatures (2500 K), compared to lower temperatures (1200 K) and so directly correlated to the surface premelting behavior of the nanoparticle structure. Analysis of the SiC nanoparticle Lindemann index between 1000 and 3000 K indicated that SWNT nucleation at temperatures below 2600 K occurred in the solid, or quasi-solid, phase. Thus, the traditional vapor-liquid-solid mechanism of SWNT growth does not apply in the case of SiC nanoparticles. Instead, we propose that this example of SWNT nucleation constitutes evidence of a vapor-solid-solid process. This conclusion complements our recent observations regarding SWNT nucleation on SiO(2) nanoparticles (A. J. Page, K. R. S. Chandrakumar, S. Irle and K. Morokuma, J. Am. Chem. Soc., 2011, 133, 621-628). In addition, similarities between the atomistic SWNT nucleation mechanisms on SiC and SiO(2) catalysts provide the first evidence of a catalyst-independent SWNT nucleation mechanism with respect to 'non-traditional' SWNT catalyst species.  相似文献   

2.
Since the discovery of single-walled carbon nanotubes (SWNTs) in the early 1990s, the most commonly accepted model of SWNT growth on traditional catalysts (i.e., transition metals including Fe, Co, Ni, etc.) is the vapor-liquid-solid (VLS) mechanism. In more recent years, the synthesis of SWNTs on nontraditional catalysts, such as SiO(2), has also been reported. The precise atomistic mechanism explaining SWNT growth on nontraditional catalysts, however, remains unknown. In this work, CH(4) chemical vapor deposition (CVD) and single-walled carbon nanotube (SWNT) nucleation on SiO(2) nanoparticles have been investigated using quantum-chemical molecular dynamics (QM/MD) methods. Upon supply of CH(x) species to the surface of a model SiO(2) nanoparticle, CO was produced as the main chemical product of the CH(4) CVD process, in agreement with a recent experimental investigation [Bachmatiuk et al., ACS Nano 2009, 3, 4098]. The production of CO occurred simultaneously with the carbothermal reduction of the SiO(2) nanoparticle. However, this reduction, and the formation of amorphous SiC, was restricted to the nanoparticle surface, with the core of the SiO(2) nanoparticle remaining oxygen-rich. In cases of high carbon concentration, SWNT nucleation then followed, and was driven by the formation of isolated sp(2)-carbon networks via the gradual coalescence of adjacent polyyne chains. These simulations indicate that the carbon saturation of the SiO(2) surface was a necessary prerequisite for SWNT nucleation. These simulations also indicate that a vapor-solid-solid mechanism, rather than a VLS mechanism, is responsible for SWNT nucleation on SiO(2). Fundamental differences between SWNT nucleation on nontraditional and traditional catalysts are therefore observed.  相似文献   

3.
Here we show that essentially any Fe compounds spanning Fe salts, nanoparticles, and buckyferrocene could serve as catalysts for single-walled carbon nanotube (SWNT) forest growth when supported on AlO(x) and annealed in hydrogen. This observation was explained by subsurface diffusion of Fe atoms into the AlO(x) support induced by hydrogen annealing where most of the deposited Fe left the surface and the remaining Fe atoms reconfigured into small nanoparticles suitable for SWNT growth. Interestingly, the average diameters of the SWNTs grown from all iron compounds studied were nearly identical (2.8-3.1 nm). We interpret that the offsetting effects of Ostwald ripening and subsurface diffusion resulted in the ability to grow SWNT forests with similar average diameters regardless of the initial Fe catalyst.  相似文献   

4.
The growth of single wall carbon nanotubes (SWNTs) mediated by metal nanoparticles is considered within (i) the surface diffusion growth kinetics model coupled with (ii) a thermal model taking into account heat release of carbon adsorption-desorption on nanotube surface and carbon incorporation into the nanotube wall and (iii) carbon nanotube-inert gas collisional heat exchange. Numerical simulations performed together with analytical estimates reveal various temperature regimes occurring during SWNT growth. During the initial stage, which is characterized by SWNT lengths that are shorter than the surface diffusion length of carbon atoms adsorbed on the SWNT wall, the SWNT temperature remains constant and is significantly higher than that of the ambient gas. After this stage the SWNT temperature decreases towards that of gas and becomes nonuniformly distributed over the length of the SWNT. The rate of SWNT cooling depends on the SWNT-gas collisional energy transfer that, from molecular dynamics simulations, is seen to be efficient only in the SWNT radial direction. The decreasing SWNT temperature may lead to solidification of the catalytic metal nanoparticle terminating SWNT growth or triggering nucleation of a new carbon layer and growth of multiwall carbon nanotubes.  相似文献   

5.
We examined the catalytic effect of nanoparticle 3d-transition metals on hydrogen desorption (HD) properties of MgH(2) prepared by mechanical ball milling method. All the MgH(2) composites prepared by adding a small amount of nanoparticle Fe(nano), Co(nano), Ni(nano), and Cu(nano) metals and by ball milling for 2 h showed much better HD properties than the pure ball-milled MgH(2) itself. In particular, the 2 mol % Ni(nano)-doped MgH(2) composite prepared by soft milling for a short milling time of 15 min under a slow milling revolution speed of 200 rpm shows the most superior hydrogen storage properties: A large amount of hydrogen ( approximately 6.5 wt %) is desorbed in the temperature range from 150 to 250 degrees C at a heating rate of 5 degrees C/min under He gas flow with no partial pressure of hydrogen. The EDX micrographs corresponding to Mg and Ni elemental profiles indicated that nanoparticle Ni metals as catalyst homogeneously dispersed on the surface of MgH(2). In addition, it was confirmed that the product revealed good reversible hydriding/dehydriding cycles even at 150 degrees C. The hydrogen desorption kinetics of catalyzed and noncatalyzed MgH(2) could be understood by a modified first-order reaction model, in which the surface condition was taken into account.  相似文献   

6.
Single-walled carbon nanotube (SWNT) horizontal arrays with specific chirality can be enriched using solid carbide catalysts on substrates. However, scale-up production by continuous loading of the solid catalysts onto the substrates is challenging. Described here is the preparation of a floating carbide solid catalyst (FSC) for the controlled growth of SWNTs. The FSC, titanium carbide (TiC) nanoparticle, was directly obtained in the carrier gas phase by decomposition and carbonization of the titanocene dichloride precursor at high temperature. By using the TiC nanoparticle FSC, both SWNT horizontal arrays and randomly distributed networks can be obtained. The chirality of the as-grown SWNTs were thermodynamically controlled to have fourfold symmetry. Further optimization of growth condition resulted in an abundance of (16,8) tubes with about a 74 % content. This FSC chemical vapor deposition (FSCCVD) method has potential for realizing mass growth of SWNTs with controlled structures.  相似文献   

7.
The growth mechanism and chirality formation of a single-walled carbon nanotube (SWNT) on a surface-bound nickel nanocluster are investigated by hybrid reactive molecular dynamics/force-biased Monte Carlo simulations. The validity of the interatomic potential used, the so-called ReaxFF potential, for simulating catalytic SWNT growth is demonstrated. The SWNT growth process was found to be in agreement with previous studies and observed to proceed through a number of distinct steps, viz., the dissolution of carbon in the metallic particle, the surface segregation of carbon with the formation of aggregated carbon clusters on the surface, the formation of graphitic islands that grow into SWNT caps, and finally continued growth of the SWNT. Moreover, it is clearly illustrated in the present study that during the growth process, the carbon network is continuously restructured by a metal-mediated process, thereby healing many topological defects. It is also found that a cap can nucleate and disappear again, which was not observed in previous simulations. Encapsulation of the nanoparticle is observed to be prevented by the carbon network migrating as a whole over the cluster surface. Finally, for the first time, the chirality of the growing SWNT cap is observed to change from (11,0) over (9,3) to (7,7). It is demonstrated that this change in chirality is due to the metal-mediated restructuring process.  相似文献   

8.
Single‐walled carbon nanotube (SWNT) horizontal arrays with specific chirality can be enriched using solid carbide catalysts on substrates. However, scale‐up production by continuous loading of the solid catalysts onto the substrates is challenging. Described here is the preparation of a floating carbide solid catalyst (FSC) for the controlled growth of SWNTs. The FSC, titanium carbide (TiC) nanoparticle, was directly obtained in the carrier gas phase by decomposition and carbonization of the titanocene dichloride precursor at high temperature. By using the TiC nanoparticle FSC, both SWNT horizontal arrays and randomly distributed networks can be obtained. The chirality of the as‐grown SWNTs were thermodynamically controlled to have fourfold symmetry. Further optimization of growth condition resulted in an abundance of (16,8) tubes with about a 74 % content. This FSC chemical vapor deposition (FSCCVD) method has potential for realizing mass growth of SWNTs with controlled structures.  相似文献   

9.
使用密度泛函方法对C原子在Fe(111)表面吸附团聚和次表层的吸附扩散进行了研究。在炭覆盖度θC <1 ML时,C主要以孤立的原子态存在并导致表面重构;1 ML≤θC ≤2 ML,"mC2+nC"为主要的吸附形式;θC≥2 ML时,复杂的吸附形态比如碳链和岛状碳团簇开始生成。这些复杂岛状碳团簇是Fe(111)表面石墨沉积或碳纳米管生长的成核中心。在次表层,C原子在八面体位稳定存在。C在表面的迁移能垒为0.45 eV,由表面迁移到次表面的的能垒为0.73 eV。虽然C2团簇的生成是热力学有利的,但是C向次表层的迁移动力学上占优。  相似文献   

10.
A strategy to prepare horizontally aligned single-walled carbon nanotubes(SWNTs) at moderate temperatures(≤600 ℃) were developed.Using ferocene as the catalyst precursor,Fe nanoparticles are formed in the gaseous phase and catalyze the nucleation and growth of SWNTs in situ.Then the resultant SWNTs are deposited onto the substrates downstream and aligned by the surface lattice of the ST-cut single crystal quartz.The preparation of SWNT arrays at moderate temperatures is important for combining the tube growth with device fabrication.  相似文献   

11.
Gas feed composition and reaction temperature were varied to identify the thermodynamic threshold conditions for the nucleation and growth of SWNT from methane on supported Fe/Mo catalyst. These reaction conditions closely approximate the pseudoequilibrium conditions that lead to the nucleation and growth of SWNT. These measurements also serve to determine an upper limit of the Gibbs free energy of formation for SWNT. The Gibbs free energy of formation relative to graphite is in good agreement with literature values predicted from simulations for SWNT nuclei containing approximately 80 atoms, while considerably larger than that predicted for bulk (5,5) SWNT. Our estimate over the range 700 to 1000 degrees C of 16.1 to 13.9 kJ mol(-1) falls between the results of these simulations and literature values for diamond.  相似文献   

12.
A fourth-generation (G4) poly(amidoamine) (PAMAM) dendrimer (G4-NH2) has been used as a template to deliver nearly monodispersed catalyst nanoparticles to SiO2/Si, Ti/Si, sapphire, and porous anodic alumina (PAA) substrates. Fe2O3 nanoparticles obtained after calcination of the immobilized Fe3+/G4-NH2 composite served as catalytic "seeds" for the growth of single-wall carbon nanotubes (SWNTs) by microwave plasma-enhanced CVD (PECVD). To surmount the difficulty associated with SWNT growth via PECVD, reaction conditions that promote the stabilization of Fe nanoparticles, resulting in enhanced SWNT selectivity and quality, have been identified. In particular, in situ annealing of Fe catalyst in an N2 atmosphere was found to improve SWNT selectivity and quality. H2 prereduction at 900 degrees C for 5 min was also found to enhance SWNT selectivity and quality for SiO2/Si supported catalyst, albeit of lower quality for sapphire supported catalyst. The application of positive dc bias voltage (+200 V) during SWNT growth was shown to be very effective in removing amorphous carbon impurities while enhancing graphitization, SWNT selectivity, and vertical alignment. The results of this study should promote the use of exposed Fe nanoparticles supported on different substrates for the growth of high-quality SWNTs by PECVD.  相似文献   

13.
Ni/Al2O3催化剂上甲烷部分氧化制合成气反应机理   总被引:12,自引:2,他引:12  
用变应答/质谱在线检测技术研究了Ni/Al2O3催化剂上甲烷部分氧化制合成气的反应要理,研究结果指出,在常压973K条件下,Ni/Al2O3催化剂上甲烷部分氧化制合成气按直接氧化机理进行,H2和C烛甲烷部分氧化的一次产物,其主要反应可表示如下:1.CH4+xNi-NixC+2H2,2.O2+2Ni-2NiO,3.NixC+NiO-CO+(x+1)Ni。  相似文献   

14.
We have developed a new preparation method (ME method) of supported metal catalysts by using microemulsion. The metal particles in the catalyst prepared by this method were interacted strongly with support and were considered to be positively charged, and the SiO2-supported Rh and Fe catalysts prepared by this method exhibited a unique activity and a good selectivity to oxygenates in the hydrogenation of CO. The Al2O3-supported Ni catalyst also exhibited an excellent activity and a strong resistance to carbon deposition in the methane-steam reforming. In this review, these interesting catalytic behaviors of the catalysts prepared by ME method were elucidated from the view-point of the electronic state of metals.  相似文献   

15.
With the desire to mass produce any specific n,m type of single wall carbon nanotube (SWNT) from a small sample of the same material, we disclose here the preliminary work directed toward that goal. The ultimate protocol would involve taking a single n,m-type nanotube sample, cutting the nanotubes in that sample into many short nanotubes, using each of those short nanotubes as a template for growing much longer nanotubes of the same type, and then repeating the process. The result would be an amplification of the original tube type: a parent SWNT serving as the prolific progenitor of future identical SWNT types. As a proof-of-concept, we use here a short SWNT seed as a template for vapor liquid solid (VLS) amplification growth of an individual long SWNT. The original short SWNT seed was a polymer-wrapped SWNT, end-carboxylated, and further tethered with Fe salts at its ends. The Fe salts were to act as the growth catalysts upon subsequent reductive activation. Deposition of the short SWNT-Fe tipped species upon an oxide surface was followed by heating in air to consume the polymer wrappers, then reducing the Fe salts to Fe(0) under a H2-rich atmosphere. During this heating, the Fe(0) can etch back into the short SWNT so that the short SWNT acts as a template for new growth to a long SWNT that occurs upon introduction of C2H4 as a carbon source. Analysis indicated that the templated VLS-grown long SWNT had the same diameter and surface orientation as the original short SWNT seed, although amplifying the original n,m type remains to be proven. This study could pave the way for an amplified growth process of SWNTs en route to any n,m tube type synthesis from a starting sample of pure nanotubes.  相似文献   

16.
First-principles calculations have been performed to investigate CH(4) dissociation and C diffusion during the Ni∕Fe-catalyzed growth of carbon nanofibers (CNFs). Two bulk models with different Ni to Fe molar ratios (1:1 and 2:1) are constructed, and x-ray diffraction (XRD) simulations are conducted to evaluate their reliability. With the comparison between the calculated and experimental XRD patterns, these models are found to be well suited to reproduce the crystalline structures of Ni∕Fe bulk alloys. The calculations indicate the binding of the C(1) derivatives to the Ni∕Fe closest-packed surfaces is strengthened compared to that on Ni(111), arising from the upshift of the weighted d-band centers of catalyst surfaces. Then, the transition states for the four successive dehydrogenation steps in CH(4) dissociation are located using the dimer method. It is found that the energy barriers for the first three steps are rather close on the alloyed Ni∕Fe and Ni surfaces, while the activation energy for CH dissociation is substantially lowered with the introduction of Fe. The dissolution of the generated C from the surface into the bulk of the Ni∕Fe alloys is thermodynamically favorable, and the diffusion of C through catalyst particles is hindered by the Fe component. With the combination of density functional theory calculations and kinetic analysis, the C concentration in catalyst particles is predicted to increase with the Fe content. Meanwhile, other experimental conditions, such as the composition of carbon-containing gases, feedstock partial pressure, and reaction temperature, are also found to play a key role in determining the C concentration in bulk metal, and hence the microstructures of generated CNFs.  相似文献   

17.
采用创新方法制备的ZrO2、TiO2担载氧化铁催化剂在二氧化碳加氢制低碳烃反应中显示出良好的催化活性和产物选择性,由15wt?/ZrO2给出的最佳结果为:CO2转化率为20%,除甲烷以外的低碳烃的选择性接近70%。还考察了金属Fe担载量及催化剂的预还原温度对催化活性的影响,发现催化活性随金属Fe担载量的增加而呈现“双峰”现象,这种现象可能与活性物种(零价铁及配位不饱和的三价或二价铁)在催化剂表面的几何排布有关,而两种催化剂的最佳还原温度分别为723 K(5wt?/ZrO2)和773 K(5wt?/TiO2)。  相似文献   

18.
王维佳  李金林  罗明生 《催化学报》2007,28(10):925-930
用共沉淀法制备了一系列不同硅含量的铁基催化剂,采用N2吸附和原位X射线衍射对催化剂进行了表征,在固定床反应器中考察了催化剂的费-托合成反应活性、选择性和稳定性.结果表明,含硅的催化剂具有较大的比表面积和较小的平均孔径,在CO还原及费-托合成反应中生成的碳化铁物种的稳定性比不含硅的催化剂高.在费-托合成反应中,不含硅的催化剂具有较高的初始活性,但易失活;含硅的催化剂具有较低的初始活性,但稳定性较高.Fe7C3是活性最高的碳化铁物种.随着硅含量的增加,催化剂的费-托合成反应更易生成低碳数产物.  相似文献   

19.
Layered samples Si(100)/C/Ni/BC(x)N(y) and Si(100)/C/Cu/BC(x)N(y) were produced by physical vapor deposition of a metal (Ni, Cu, resp.) and low-pressure chemical vapor deposition of the boron carbonitride on a Si(100) substrate. Between the Si and the Ni (Cu) and on the surface of the Ni (Cu) layer, thin carbon layers were deposited, as a diffusion barrier or as a protection against oxidation, respectively. Afterwards, the surface carbon layer was removed. As precursor, trimethylamine borane and, as an auxiliary gas, H(2) and NH(3) were used, respectively. The chemical compositions of the layers and of the interfaces in between were characterized by total-reflection X-ray fluorescence spectrometry combined with near-edge X-ray absorption fine-structure spectroscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry. The application of H(2) yielded the BC(x)N(y) compound whereas the use of NH(3) led to a mixture of h-BN and graphitic carbon. At the BC(x)N(y)/metal interface, metal borides could be identified. At the relatively high synthesis temperature of 700 °C, broad regions of Cu or Ni and Si were observed between the metal layer and the substrate Si.  相似文献   

20.
Here, we report a highly efficient growth of single-walled carbon nanotubes (SWNTs) and double-walled carbon nanotubes (DWNTs) on conducting metal foils. We found that foils made of Ni-based alloys with Cr or Fe serve as excellent substrates for SWNT (DWNT) synthesis. In significant contrast, a CNT grown on Ni, Fe foils contains a significant ratio of MWNTs. This result opens up an economical route for the mass production of SWNT (DWNT) forests and also enables the straightforward integration of CNTs into nanoelectronic devices, such as field emission displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号