首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   773篇
  免费   44篇
  国内免费   4篇
化学   621篇
晶体学   7篇
力学   12篇
数学   42篇
物理学   139篇
  2021年   10篇
  2020年   13篇
  2019年   23篇
  2018年   5篇
  2017年   5篇
  2016年   21篇
  2015年   22篇
  2014年   17篇
  2013年   46篇
  2012年   46篇
  2011年   75篇
  2010年   27篇
  2009年   25篇
  2008年   44篇
  2007年   48篇
  2006年   58篇
  2005年   40篇
  2004年   34篇
  2003年   26篇
  2002年   20篇
  2001年   14篇
  2000年   13篇
  1999年   7篇
  1998年   9篇
  1997年   9篇
  1996年   13篇
  1995年   3篇
  1994年   7篇
  1993年   6篇
  1992年   5篇
  1991年   7篇
  1990年   3篇
  1989年   7篇
  1988年   4篇
  1987年   3篇
  1985年   11篇
  1984年   5篇
  1983年   5篇
  1982年   9篇
  1981年   8篇
  1980年   13篇
  1979年   3篇
  1978年   5篇
  1977年   8篇
  1976年   5篇
  1975年   6篇
  1974年   8篇
  1973年   3篇
  1970年   3篇
  1968年   3篇
排序方式: 共有821条查询结果,搜索用时 15 毫秒
1.
2.
Development of supramolecular methods to further activate a highly reactive intermediate is a fascinating strategy to create novel potent catalysts for activation of inert chemicals. Herein, a supramolecular approach to enhance the oxidizing ability of a high-valent oxo species of a nitrido-bridged iron porphyrinoid dimer that is a known potent molecular catalyst for light alkane oxidation is reported. For this purpose, a nitrido-bridged dinuclear iron complex of porphyrin-phthalocyanine heterodimer 3 5+, which is connected through a fourfold rotaxane, was prepared. Heterodimer 3 5+ catalyzed ethane oxidation in the presence of H2O2 at a relatively low temperature. The site-selective complexation of 3 5+ with an additional anionic porphyrin (TPPS4−) through π–π stacking and electrostatic interactions afforded a stable 1:1 complex. It was demonstrated that the supramolecular post-synthetic modification of 3 5+ enhances its catalytic activity efficiently. Moreover, supramolecular conjugates achieved higher catalytic ethane oxidation activity than nitrido-bridged iron phthalocyanine dimer, which is the most potent iron-oxo-based molecular catalyst for light-alkane oxidation reported so far. Electrochemical measurements proved that the electronic perturbation from TPPS4− to 3 5+ enhanced the catalytic activity.  相似文献   
3.
The 4f-4f emissions from lanthanide trication (Ln3+) complexes are widely used in bioimaging probes. The emission intensity from Ln3+ depends on the surroundings, and thus, the design of appropriate photo-antenna ligands is indispensable. In this study, we focus on two probes for detecting hydrogen peroxide, for which emission intensities from Tb3+ are enhanced chemo-selectively by the H2O2-mediated oxidation of ligands. To understand the mechanism, the Gibbs free energy profiles of the ground and excited states related to emission and quenching are computed by combining our approximation—called the energy shift method—and density functional theory. The different emission intensities are mainly attributed to different activation barriers for excitation energy transfer from the ligand-centered triplet (T1) to the Tb3+-centered excited state. Additionally, quenching from T1 to the ground state via intersystem crossing was inhibited by intramolecular hydrogen bonds only in the highly emissive Tb3+ complexes. © 2018 Wiley Periodicals, Inc.  相似文献   
4.
5.
The location of active sites during concerted catalysis by a metal complex and tertiary amine on a SiO2 surface is discussed based on the interaction between the functionalized SiO2 surface and a probe molecule, p‐formyl phenylboronic acid. The interactions of the probe molecule with the surface functionalities, diamine ligand, and tertiary amine, were analyzed by FT‐IR and solid‐state 13C and 11B MAS NMR. For the catalyst exhibiting high 1,4‐addition activity, the diamine ligand and tertiary amine base exist in closer proximity than in the catalyst with low activity.  相似文献   
6.
7.
Reactions occurring at surfaces and interfaces necessitate the creation of well-designed surface and interfacial structures. To achieve a combination of bulk material (i.e., framework) and void spaces, a meticulous process of “nano-architecting” of the available space is necessary. Conventional porous materials such as mesoporous silica, zeolites, and metal–organic frameworks lack advanced cooperative functionalities owing to their largely monotonous pore geometries and limited conductivities. To overcome these limitations and develop functional structures with surface-specific functions, the novel materials space-tectonics methodology has been proposed for future materials synthesis. This review summarizes recent examples of materials synthesis based on designing building blocks (i.e., tectons) and their hybridization, along with practical guidelines for implementing materials syntheses and state-of-the-art examples of practical applications. Lastly, the potential integration of materials space-tectonics with emerging technologies, such as materials informatics, is discussed.  相似文献   
8.
Although various synthetic methodologies including organic synthesis, polymer chemistry, and materials science are the main contributors to the production of functional materials, the importance of regulation of nanoscale structures for better performance has become clear with recent science and technology developments. Therefore, a new research paradigm to produce functional material systems from nanoscale units has to be created as an advancement of nanoscale science. This task is assigned to an emerging concept, nanoarchitectonics, which aims to produce functional materials and functional structures from nanoscale unit components. This can be done through combining nanotechnology with the other research fields such as organic chemistry, supramolecular chemistry, materials science, and bio-related science. In this review article, the basic-level of nanoarchitectonics is first presented with atom/molecular-level structure formations and conversions from molecular units to functional materials. Then, two typical application-oriented nanoarchitectonics efforts in energy-oriented applications and bio-related applications are discussed. Finally, future directions of the molecular and materials nanoarchitectonics concepts for advancement of functional nanomaterials are briefly discussed.  相似文献   
9.
We demonstrate that multi-fluorinated boron-fused azobenzene (BAz) complexes can work as a strong electron acceptor in electron donor-acceptor (D-A) type π-conjugated polymers. Position-dependent substitution effects were revealed, and the energy level of the lowest unoccupied molecular orbital (LUMO) was critically decreased by fluorination. As a result, the obtained polymers showed near-infrared (NIR) emission (λPL=758–847 nm) with high absolute photoluminescence quantum yield (ΦPL=7–23%) originating from low-lying LUMO energy levels of the BAz moieties (−3.94 to −4.25 eV). Owing to inherent solid-state emissive properties of the BAz units, deeper NIR emission (λPL=852980 nm) was detected in film state. Clear solvent effects prove that the NIR emission is from a charge transfer state originating from a strong D-A interaction. The effects of fluorination on the frontier orbitals are well understandable and predictable by theoretical calculation with density functional theory. This study demonstrates the effectiveness of fluorination to the BAz units for producing a strong electron-accepting unit through fine-tuning of energy gaps, which can be the promising strategy for designing NIR absorptive and emissive materials.  相似文献   
10.
A variety of medium‐sized cycloalkynes were efficiently synthesized by the double Nicholas reaction of cobalt complex and bis(hetero)substituted acyclic compound. The alkyne moiety within the ring has a unique bent structure and high reactivity toward cycloaddition reactions. Furthermore, preparation of multifunctionalized alkynes was achieved by embedding the cycloalkyne within a peptide chain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号