首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oriented ZnO nanorods were grown on ion-beam-sputtered ZnO seed layers through a hydrothermal approach without any metal catalyst. The sputtered ZnO seed layers were pre-annealed at different temperatures before the growth of ZnO nanorods. The effects of pre-annealing of the ZnO seed layers on the growth rate, crystallinity and optical properties of ZnO nanorods thereon were studied. The obtained ZnO nanorods had a wurtzite structure and grew along the preferential [0001] orientation with a normal direction to the substrates. Results show that the growth rate and density of the ZnO nanorods strongly depend on the pre-treatment conditions of the ZnO seed layer. With higher pre-treatment temperature, the crystallinity and surface characteristics of the ZnO seed layer were improved and thereafter the growth rate of ZnO nanorods thereon increased. Photoluminescence spectroscopy results show that the UV emission also becomes stronger and sharper with increasing annealing temperature of the ZnO seed layer.  相似文献   

2.
ZnO nanorod arrays on ZnO-coated seed layers were fabricated by aqueous solution method using zinc nitrate and hexamethylenetetramine at low temperature. The seed layers were coated on ITO substrates by electrochemical deposition technique, and their textures were dominated by controlling the deposition parameters, such as deposition potential and electrolyte concentration. The effects of the electrodeposited seed layers and the growing parameters on the structures and properties of ZnO nanorod arrays were primarily discussed. The orientation and morphology of both the seed layer and successive nanorods were analyzed by using X-ray diffraction (XRD), SEM and TEM. The results show that the seed layer deposited at −700 mV has evenly distributed crystallites and (0 0 2) preferred orientation; the density of resultant nanorods is high and ZnO nanorods stand completely perpendicular onto substrates. Meanwhile, the size of nanorods quite also depends on the growth solution, and the higher concentration of growth solution primary leads to a large diameter of the ZnO nanorods.  相似文献   

3.
A simple synthesis route to high-quality sub-50 nm ZnO nanowires is reported, utilizing ZnO thin films grown by pulse laser deposition (PLD) as seed layers. Depending upon the PLD growth conditions, the surface morphology of the ZnO nanowires on ZnO film was distinctively different whereas the diameters were almost the same. With the increase of the concentration of zinc nitrate/methenamine solution from 0.002 to 0.02 M, the average diameter of the ZnO nanowire increased but remained sub-50 nm. The grown ZnO nanowires showed a high crystallinity with a low defect density confirmed by a sharp photoluminescence spectrum.  相似文献   

4.
ZnO nanorods have been grown using ZnO seed layer onto ITO-coated glass substrates. CdS quantum dots have been deposited onto ZnO nanorods using simple precursors by chemical method and the assembly of CdS quantum dots with ZnO nanorod has been used as photo-electrode in quantum dot-sensitized solar cells. X-ray diffraction results show that ZnO seed layer, ZnO nanorods, and CdS quantum dot-sensitized ZnO nanorods exhibit hexagonal structure. The particle size of CdS nanoparticle is 5 nm. The surface morphology studied using scanning electron microscope shows that the top surface of the vertically aligned ZnO nanorods is fully covered by CdS quantum dots. The ZnO nanorods have diameter ranging from 100 to 200 nm. The absorption spectra reveal that the absorption edge of CdS quantum dot-sensitized ZnO nanorods shift toward longer wavelength side when compared to the absorption edge of ZnO. The efficiency of the fabricated CdS quantum dot-sensitized ZnO nanorod-based solar cell is 0.69% and is the best efficiency reported so far for this type of solar cells.  相似文献   

5.
Tuning the morphology, size and aspect ratio of free standing ZnO nanostructured arrays by a simple hydrothermal method is reported. Pre-coated ZnO seed layers of two different thicknesses (≈350 nm or 550 nm) were used as substrates to grow ZnO nanostructures for the study. Various parameters such as chemical ambience, pH of the solution, strength of the Zn2+ atoms and thickness of seed bed are varied to analyze their effects on the resultant ZnO nanostructures. Vertically oriented hexagonal nanorods, multi-angular nanorods, hexagonal diskette and popcorn-like nanostructures are obtained by altering the experimental parameters. All the produced nanostructures were analysed by X-ray powder diffraction analysis and found to be grown in the (002) orientation of wurtzite ZnO. The texture co-efficient of ZnO layer was improved by combining a thick seed layer with higher cationic strength. Surface morphological studies reveal various nanostructures such as nanorods, diskettes and popcorn-like structures based on various preparation conditions. The optical property of the closest packed nanorods array was recorded by UV-VIS spectrometry, and the band gap value simulated from the results reflect the near characteristic band gap of ZnO. The surface roughness profile taken from the Atomic Force Microscopy reveals a roughness of less than 320 nm.  相似文献   

6.
Different morphologies of zinc oxide (ZnO) nanorods and nanotubes, which were grown under the same conditions but different dissolving processes, are prepared in our experiment through hydrothermal method. After the growth process, cooling down the reactor naturally or dissolving at a constant temperature of 40 °C, preferential dissolution will occur at different places on the tip of ZnO nanorods. During the dissolution process, different dissolution rates on the entire surface of nanorod will lead to different nanostructures. ZnO nanorods and nanotubes on Cu substrates display the same PL property with strong green emission but weak UV emission, while ZnO nanorods on Si substrates exhibits a relatively strong UV emission.  相似文献   

7.
陈先梅  王晓霞  郜小勇  赵显伟  刘红涛  张飒 《物理学报》2013,62(5):56104-056104
利用水热法在直流磁控溅射制备的掺铝氧化锌 (AZO) 种子层上制备了不同形貌和光学性能的掺银ZnO纳米棒, 并采用XRD、扫描电镜、透射谱、光发射谱和EDS谱详细研究了Ag离子与Zn离子的摩尔百分比 (RAg/Zn) 及AZO种子层对掺银ZnO纳米棒的结构和光学性质的影响. 随着RAg/Zn的增加, 掺银ZnO 纳米棒的微结构和光学性质的变化与银掺杂诱导的纳米棒的端面尺寸变化有关. 平均端面尺寸的变化归结于种子层颗粒大小和颗粒数密度不同导致掺入的Ag离子的相对比例不同. 溅射15 min的AZO种子层上生长的ZnO纳米棒由于缺陷增多导致在可见光区的发光峰明显强于溅射10 min 的AZO种子层上、相同RAg/Zn 条件下生长的ZnO纳米棒. Ag掺杂产生的点缺陷增多导致可见光区PL波包较宽. 纯ZnO纳米棒的微结构与种子层厚度导致的结晶度和颗粒大小有关. 关键词: ZnO纳米棒 水热法 Ag掺杂 直流磁控溅射  相似文献   

8.
ZnO active layers on ZnO buffer layers were grown at various O2/O2 + Ar flow-rate ratios by using radio-frequency magnetron sputtering. Atomic force microscopy images showed that the surface roughnesses of the ZnO active layers grown on ZnO buffer layers decreased with decreasing O2 atmosphere, indicative of an improvement in the ZnO surfaces. The type of the ZnO active layer was n-type, and the resistivity of the layer increased with increasing O2 atmosphere. Photoluminescence spectra from the ZnO active layers grown on the ZnO buffer layers showed dominant peaks corresponding to local levels in the ZnO energy gap resulting from oxygen vacancies or interstitial zinc vacancies, and the peak positions changed significantly with the O2/O2 + Ar flow rate. These results can help improve understanding of the dependences of the surface and the optical properties on the O2/O2 + Ar ratio for ZnO thin films grown on ZnO buffer layers.  相似文献   

9.
采用提拉法在ITO衬底上制备种子层,并使用电化学沉积制备高度取向的氧化锌纳米棒,研究了不同提拉次数下籽晶层厚度与电化学沉积电位对氧化锌纳米棒形貌的影响。在此基础上,制备了自驱动型紫外探测器并测试了其光响应谱。结果表明,该探测器可以对部分紫外波段(300~400 nm)有选择性地光响应,峰值响应度为0.012 A/W。  相似文献   

10.
In this paper, growth steps of well defined ZnO nanorod arrays deposited on seeded substrates were investigated. To obtain ZnO seed layer on glass substrates, a successive ionic layer adsorption and reaction (SILAR) method was used and then ZnO nanorods were grown on seed layer using a chemical bath deposition (CBD) method. The effects of seed layer and deposition time on morphology, crystallographic structure (e.g. grain size, microstrain and dislocation density) and electrical characteristics of ZnO nanorods were studied. From the SEM micrographs, it could be seen that the ZnO nanorods densely covered the substrate and were nearly perpendicular to the substrate surface. The XRD patterns showed that the ZnO nanorod arrays had a hexagonal wurtzite structure with a preferred orientation along the (002) plane. An increase in deposition time resulted in an increase in the intensity of the preferred orientation and grain size, but a decrease in microstrain and dislocation density. Electrical activation energies of the structures were calculated as 0.15–0.85?eV from current–temperature characteristics. It was concluded that the morphologies of the structures obtained in this study via a simple and fast solution method can provide high surface areas which are important in area-dependent applications, such as solar cells, hydrogen conversion devices, sensors, etc.  相似文献   

11.
Well-aligned single crystalline zinc oxide (ZnO) nanorods were successfully grown, by hydrothermal synthesis at a low temperature, on flexible polyethylene terephthalate (PET) substrates with a seed layer. Photoluminescence (PL), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) measurements were used to analyze the optical and structural properties of ZnO nanorods grown for various durations from 0.5 h to 10 h. Regular and well-aligned ZnO nanorods with diameters ranging from 62 nm to 127 nm and lengths from 0.3 μm to 1.65 μm were formed after almost 5 h of growth. The growth rate of ZnO grown on PET substrates is lower than that grown on Si (1 0 0) substrates. Enlarged TEM images show that the tips of the ZnO nanorods grown for 6 h have a round shape, whereas the tips grown for 10 h are sharpened. The crystal properties of ZnO nanorods can be tuned by using the growth duration as a growth condition. The XRD and PL results indicate that the structural and optical properties of the ZnO nanorods are most improved after 5 h and 6 h of growth, respectively.  相似文献   

12.
ZnO nanorod arrays (ZNAs) were prepared via a two-step seeding and solution hydrothermal growth process. Effects of preparing parameters such as seed layer, colloid concentration, substrate and precursor concentration, on the alignment control of ZNAs were systematically investigated. The deviation angle of ZnO nanorods was measured to evaluate the alignment of arrays. Results show that seed layer not only controls the vertical orientation of ZNAs, but also the compactness of ZNAs. Altering colloid concentration and substrate can influence the microstructure of ZnO seed layer and affect the ordered alignment of ZNAs. The precursor concentration has an insignificant effect on the alignment of ZNAs but has great impact on the morphology of ZNAs. Alignment-controlled and well-aligned ZnO nanorods with different diameter and aspect ratio can be obtained by properly controlling the preparing parameters. A growth mechanism was proposed for the growth of ZnO nanorods.  相似文献   

13.
Zinc oxide (ZnO) nanorods were successfully grown on polyethylene naphthalate substrates with a seed layer using a wet chemical bath deposition method at a low temperature. Using various precursor concentrations, the diameter, length, and density of the ZnO nanorods were controlled, and their optical and crystallinity properties were investigated. X-ray diffraction and field emission scanning electron microscopy were used to examine the structure and morphology of the ZnO nanorods. The obtained ZnO nanorods were hexagonal and grew vertically from the substrate in the (002) direction along the c-axis. The low compressive strain values confirmed the high-quality crystal structure of the synthesized ZnO nanorods. A 0.050 M precursor concentration resulted in nanorods with a uniform diameter along their entire length and diameters ranging from 10 nm to 40 nm. The photoluminescence results indicated that the ZnO nanorods grown using a 0.050 M precursor concentration exhibited the sharpest and most intense PL peaks in the UV range compared with the other samples. Therefore, the precursor concentration considerably influenced the growth of the ZnO nanorods. These ZnO nanorods can be greatly applied for the development of flexible, elastic electronic, and optoelectronic devices.  相似文献   

14.
Selective growth of ZnO nanorods has been successfully performed on the patterned Au/Ti metal electrode regions on a glass substrate by using a seeded thermo-electrochemical method in an acidic growth solution. The selective growth mechanism of the thermo-electrochemical method was proposed by using a series of chemical reactions for the first time. The thermo-electrochemical selective ZnO growth was performed on the cathode electrode at a temperature below 90 °C. A ZnO seed layer was precoated and selectively etched away from the non-metal regions in order to create the patterned selective nucleation sites on which the precursors are transferred and crystallized into ZnO nanorods. Both the dimensions and the placements of the ZnO nanorods have been simultaneously controlled. Energy dispersive X-ray spectrometry showed that the selectively grown ZnO nanorods consist of only Zn and O, indicating that the selectively grown ZnO nanorods are pure and contamination free. XRD and electron diffraction patterns revealed that the obtained ZnO nanorods have a wurtzite single-crystal structure.  相似文献   

15.
ZnO films have been grown by a sol-gel process on Si (1 1 1) substrates with and without SiC buffer layers. The influence of SiC buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates was investigated. The intensity of the E2 (high) phonon peak in the micro-Raman spectrum of ZnO film with the SiC buffer layer is stronger than that of the sample without the SiC buffer layer, and the breadth of E2 (high) phonon peak of ZnO film with the SiC buffer layer is narrower than that of the sample without the SiC buffer layer. These results indicated that the crystalline quality of the sample with the SiC buffer layer is better than that of the sample without the SiC buffer layer. In photoluminescence spectra, the intensity of free exciton emission from ZnO films with the SiC buffer was much stronger than that from ZnO film without the SiC buffer layer, while the intensity of deep level emission from sample with the SiC buffer layer was about half of that of sample without the SiC buffer layer. The results indicate the SiC buffer layer improves optical qualities of ZnO films on Si (1 1 1) substrates.  相似文献   

16.
Light-emitting diodes (LEDs) were formed by hydrothermally growing n-ZnO nanostructures on p-GaN with or without seed layers. The performance of the fabricated LEDs was studied. The seed layers not only have a great influence on the morphology and density of the ZnO nanostructures but also determine the lighting bias and emitting mechanism. The LEDs without seed layers and with sputtered seed layers exhibit light emission only under reverse bias, which is believed due to the GaN buffer layer/p-GaN p–n junction. The LEDs with sol–gel seed layers exhibit light emission under both forward and reverse biases. With the increase of the forward bias, the LEDs first demonstrate a red electroluminescence emission coming from the sol–gel seed layers and then demonstrate an orange emission coming from the ZnO nanorods. The sol–gel seed layer and the interface play a very important role in the electroluminescence.  相似文献   

17.
ZnO nanorods have been grown by two inexpensive, solution-based, low-temperature methods: hydrothermal growth and electrodeposition. Heterojunction n-ZnO nanorods/p-GaN light-emitting diodes have been studied for different nanorod growth methods and different preparation of the seed layer. We demonstrate that both the nanorod properties and the device performance are strongly dependent on the growth method and seed layer. All the devices exhibit light emission under both forward and reverse bias, and the emission spectra can be tuned by ZnO nanorod deposition conditions. Electrodeposition of rods or a seed layer results in yellow emission, while conventional hydrothermal growth results in violet emission.  相似文献   

18.
研究了在湿法腐蚀Ga N衬底上生长的Zn O纳米棒阵列的微结构和光学性能。相比于未经腐蚀及腐蚀5 min、10 min的Ga N上生长的Zn O纳米棒阵列,在腐蚀8 min的Ga N上生长的Zn O纳米棒阵列最细密,光学性能最好,其相应PL光谱峰强积分比IUV/Ivis最大(70.92)。因为此时Ga N衬底中的位错基本全部在表面露头,Zn O容易附着而形成更多的形核种子,并且衬底的位错在表面的边缘有助于诱导Zn O晶体的外延生长,所以Zn O棒更加细密,晶体质量更高,从而光学性能更好。  相似文献   

19.
ZnO nanostructures were grown on silicon, porous silicon, ZnO/Si and AlN/Si substrates by low-temperature aqueous synthesis method. The shape of nanostructures greatly depends on the underlying surface. Scattered ZnO nanorods were observed on silicon substrate, whereas aligned ZnO nanowires were obtained by introducing sputtered ZnO film as a seed layer. Furthermore, both the combination of nanorods and the bunch of nanowires were found on porous silicon substrates, whereas platelet-like morphology was observed on AlN/Si substrates. XRD patterns suggest the crystalline nature of aqueous-grown ZnO nanostructures and high-resolution transmission electron microscopy images confirm the single-crystalline growth of the ZnO nanorods along [0 0 1] direction. Room-temperature photoluminescence characterization clearly shows a band-edge luminescence along with a visible luminescence in the yellow spectral range.  相似文献   

20.
ZnO seed layers and well-aligned ZnO single-crystalline micro/nanorods were synthesized on bare Si in one step without the assistance of catalysts by chemical bath deposition. Scanning electron microscopy (SEM) images and X-ray diffraction patterns show that the alignment of ZnO rods on Si(100) could be adjusted by varying the substrates’ angles of incline, the reaction temperature, and the precursor concentration. Transmission electron microscopy cross-sectional images demonstrate that a polycrystalline seed layer with (0002) preferred orientation was formed between the well-aligned rods and Si substrate placed vertically while a randomly oriented layer was formed between the randomly aligned rods and Si substrate placed horizontally. The formation of seed layers and alignment of as-synthesized ZnO rods were attributed to the assistance of boundary layers in a chemical bath deposition system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号