首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO seed layers and well-aligned ZnO single-crystalline micro/nanorods were synthesized on bare Si in one step without the assistance of catalysts by chemical bath deposition. Scanning electron microscopy (SEM) images and X-ray diffraction patterns show that the alignment of ZnO rods on Si(100) could be adjusted by varying the substrates’ angles of incline, the reaction temperature, and the precursor concentration. Transmission electron microscopy cross-sectional images demonstrate that a polycrystalline seed layer with (0002) preferred orientation was formed between the well-aligned rods and Si substrate placed vertically while a randomly oriented layer was formed between the randomly aligned rods and Si substrate placed horizontally. The formation of seed layers and alignment of as-synthesized ZnO rods were attributed to the assistance of boundary layers in a chemical bath deposition system.  相似文献   

2.
ZnO nanorod arrays on ZnO-coated seed layers were fabricated by aqueous solution method using zinc nitrate and hexamethylenetetramine at low temperature. The seed layers were coated on ITO substrates by electrochemical deposition technique, and their textures were dominated by controlling the deposition parameters, such as deposition potential and electrolyte concentration. The effects of the electrodeposited seed layers and the growing parameters on the structures and properties of ZnO nanorod arrays were primarily discussed. The orientation and morphology of both the seed layer and successive nanorods were analyzed by using X-ray diffraction (XRD), SEM and TEM. The results show that the seed layer deposited at −700 mV has evenly distributed crystallites and (0 0 2) preferred orientation; the density of resultant nanorods is high and ZnO nanorods stand completely perpendicular onto substrates. Meanwhile, the size of nanorods quite also depends on the growth solution, and the higher concentration of growth solution primary leads to a large diameter of the ZnO nanorods.  相似文献   

3.
Well-aligned ZnO nanorod arrays were synthesized by low-temperature wet chemical bath deposition (CBD) method on Si substrate under different conditions. Results illustrated that dense ZnO nanorods with hexagonal wurtzite structure were vertically well-aligned and uniformly distributed on the substrate. The effects of precursor concentration, growth temperature and time on nanorods morphology were investigated systematically. The mechanism for the effect of preparation parameters was elucidated based on the chemical process of CBD and basic nucleation theory. It is demonstrated that the controllable growth of well-aligned ZnO nanorods can be realized by readily adjusting the preparation parameters. Strong near-band edge ultraviolet (UV) emission were observed in room temperature photoluminescence (PL) spectra for the samples prepared under optimized parameters, yet the usually observed defect related deep level emissions were nearly undetectable, indicating high optical quality ZnO nanorod arrays could be achieved via this easy process chemical approach at low temperature.  相似文献   

4.
A new ligand, N,N,N′,N′-tetramethylethylenediamine, has been used to grow ZnO nanorods on silicon substrates via a two steps approach. A preliminary seeding on silicon substrates has been combined with chemical bath deposition using a Zinc acetate–N,N,N′,N′-tetramethylethylenediamine aqueous solution. The used diamino ligand has been selected as Zn2+ complexing agent and the related hydrolysis generates the reacting ions (Zn2+ and OH) responsible for the ZnO growth. The seed layer has been annealed at low temperature (<200 °C) and the ZnO nanorods have been grown on this ZnO amorphous layer. There is experimental evidence that the ligand concentration (ranging from 5 to 50 mM) strongly affects the alignment of ZnO nanorods on the substrate, their lateral dimension and the related surface density. Length and diameter of ZnO nanorods increase upon increasing the ligand concentration, while the nanorod density decreases. Even more important, it has been demonstrated, as proof of concept, that chemical bath deposition can be usefully combined with colloidal lithography for selective ZnO nanorod deposition. Thus, by patterning the ZnO seeded substrate with polystyrene microsphere colloidal lithography, regular Si hole arrays, spatially defined by hexagonal ZnO nanorods, have been successfully obtained.  相似文献   

5.
Zinc oxide (ZnO) nanorods were successfully grown on polyethylene naphthalate substrates with a seed layer using a wet chemical bath deposition method at a low temperature. Using various precursor concentrations, the diameter, length, and density of the ZnO nanorods were controlled, and their optical and crystallinity properties were investigated. X-ray diffraction and field emission scanning electron microscopy were used to examine the structure and morphology of the ZnO nanorods. The obtained ZnO nanorods were hexagonal and grew vertically from the substrate in the (002) direction along the c-axis. The low compressive strain values confirmed the high-quality crystal structure of the synthesized ZnO nanorods. A 0.050 M precursor concentration resulted in nanorods with a uniform diameter along their entire length and diameters ranging from 10 nm to 40 nm. The photoluminescence results indicated that the ZnO nanorods grown using a 0.050 M precursor concentration exhibited the sharpest and most intense PL peaks in the UV range compared with the other samples. Therefore, the precursor concentration considerably influenced the growth of the ZnO nanorods. These ZnO nanorods can be greatly applied for the development of flexible, elastic electronic, and optoelectronic devices.  相似文献   

6.
In this paper, growth steps of well defined ZnO nanorod arrays deposited on seeded substrates were investigated. To obtain ZnO seed layer on glass substrates, a successive ionic layer adsorption and reaction (SILAR) method was used and then ZnO nanorods were grown on seed layer using a chemical bath deposition (CBD) method. The effects of seed layer and deposition time on morphology, crystallographic structure (e.g. grain size, microstrain and dislocation density) and electrical characteristics of ZnO nanorods were studied. From the SEM micrographs, it could be seen that the ZnO nanorods densely covered the substrate and were nearly perpendicular to the substrate surface. The XRD patterns showed that the ZnO nanorod arrays had a hexagonal wurtzite structure with a preferred orientation along the (002) plane. An increase in deposition time resulted in an increase in the intensity of the preferred orientation and grain size, but a decrease in microstrain and dislocation density. Electrical activation energies of the structures were calculated as 0.15–0.85?eV from current–temperature characteristics. It was concluded that the morphologies of the structures obtained in this study via a simple and fast solution method can provide high surface areas which are important in area-dependent applications, such as solar cells, hydrogen conversion devices, sensors, etc.  相似文献   

7.
Oriented ZnO nanorods were grown on ion-beam-sputtered ZnO seed layers through a hydrothermal approach without any metal catalyst. The sputtered ZnO seed layers were pre-annealed at different temperatures before the growth of ZnO nanorods. The effects of pre-annealing of the ZnO seed layers on the growth rate, crystallinity and optical properties of ZnO nanorods thereon were studied. The obtained ZnO nanorods had a wurtzite structure and grew along the preferential [0001] orientation with a normal direction to the substrates. Results show that the growth rate and density of the ZnO nanorods strongly depend on the pre-treatment conditions of the ZnO seed layer. With higher pre-treatment temperature, the crystallinity and surface characteristics of the ZnO seed layer were improved and thereafter the growth rate of ZnO nanorods thereon increased. Photoluminescence spectroscopy results show that the UV emission also becomes stronger and sharper with increasing annealing temperature of the ZnO seed layer.  相似文献   

8.
Highly oriented multilinked ZnO nano and micro rods were deposited using aqueous solution growth technique on ITO and glass substrates. Their study provides a basic understanding of effect of the base material on the growth of nanorods. An equimolar aqueous solution of Zinc nitrate and hexamine (HMT) was used for the preparation of ZnO nanorods arrays. ZnO was deposited on ITO and glass substrates after establishing the optimal pH and concentration, which yield the best substrate coverage for precursor solution. To achieve uniform growth and high density of ZnO nanorods, the prepared solution was heated at certain constant temperature. The experimental results have been obtained by using Scanning Electron Microscope (SEM), X-ray diffractometer (XRD) and Fluorescence Spectroscope which shows highly oriented nanorods perpendicular to the surface of substrates and a comparative study of ITO and glass grown nanorod arrays shows that the structural chemistry of the substrate clearly affects the growth nanostructures. The high variation in optical properties can be attributed by the heating temperatures and limited presence of reactants available for the controlled growth on substrates. It is also observed confined and decreased particle size with enhanced nucleation on ITO substrate as compared to glass. Due to the physical limitations in the growth, this kinetically controlled nucleation would be responsible for producing the highly uniform, dense and perpendicularly oriented nanorods.  相似文献   

9.
电沉积法制备ZnO纳米柱及其机制研究   总被引:1,自引:1,他引:0       下载免费PDF全文
采用阴极还原方法,以Zn(NO3)2水溶液为电解液制备ZnO纳米柱。分析了不同沉积电位和不同沉积时间的缓冲层对ZnO纳米柱的密度、形貌及取向的影响。通过分析缓冲层在不同沉积时间下的电流密度变化,研究了缓冲层对ZnO纳米柱密度影响的机理。利用扫描电子显微镜(SEM)和X射线衍射(XRD)分析了样品的表面形貌及结构。研究结果表明,缓冲层能够增加ZnO纳米柱的密度及c轴的取向性,当缓冲层的沉积时间为60 s时,可以得到密度最大、取向最好的ZnO纳米柱。  相似文献   

10.
采用提拉法在ITO衬底上制备种子层,并使用电化学沉积制备高度取向的氧化锌纳米棒,研究了不同提拉次数下籽晶层厚度与电化学沉积电位对氧化锌纳米棒形貌的影响。在此基础上,制备了自驱动型紫外探测器并测试了其光响应谱。结果表明,该探测器可以对部分紫外波段(300~400 nm)有选择性地光响应,峰值响应度为0.012 A/W。  相似文献   

11.
Aligned ZnO nanorod arrays were fabricated by chemical solution deposition based on Si substrate which was spin coated with ZnO colloid as nucleation seeds. Their microstructures were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The results indicated that ZnO nanorods nucleated and grew vertically on Si substrates along the [0 0 1] direction with single-crystalline structure. The diameter of ZnO nanorods was greatly affected by the grain size of ZnO seeds. Room-temperature photoluminescence of nanorods has a strong emission band at about 384 nm.  相似文献   

12.
《Current Applied Physics》2015,15(3):356-362
This paper reports a new method for fabricating two-dimensional ZnO nanorod patterns. A water soluble mixture of poly(vinyl alcohol)-N-methyl-4(4′-formylstyryl)pyridinium methosulfate acetal (PVA-Sbq) and zinc acetate (ZnA) was used as a negative photoresist to produce the desired patterns using conventional photolithography. Hydrothermally-grown ZnO nanorods were grown selectively on the calcined PVA-Sbq/ZnA patterns. The appropriate concentration of PVA-Sbq and ZnA that can produce the desirable seed layer pattern was determined experimentally. Furthermore, the effects of the calcination time on the morphology and vertical alignment of ZnO nanorods were investigated. The vertically-aligned ZnO nanorods were generated by sufficient calcination of the patterned seed layer. On the other hand, the aspect ratio of ZnO nanorods decreased slightly with increasing calcination time. This new approach provides a simple and cost-effective method for fabricating ZnO nanorod patterns which can be beneficial in various solid-state devices and optoelectronic applications.  相似文献   

13.
ZnO nanostructures were grown on silicon, porous silicon, ZnO/Si and AlN/Si substrates by low-temperature aqueous synthesis method. The shape of nanostructures greatly depends on the underlying surface. Scattered ZnO nanorods were observed on silicon substrate, whereas aligned ZnO nanowires were obtained by introducing sputtered ZnO film as a seed layer. Furthermore, both the combination of nanorods and the bunch of nanowires were found on porous silicon substrates, whereas platelet-like morphology was observed on AlN/Si substrates. XRD patterns suggest the crystalline nature of aqueous-grown ZnO nanostructures and high-resolution transmission electron microscopy images confirm the single-crystalline growth of the ZnO nanorods along [0 0 1] direction. Room-temperature photoluminescence characterization clearly shows a band-edge luminescence along with a visible luminescence in the yellow spectral range.  相似文献   

14.
The growth of ZnO nanorod arrays via a template-free sol-gel process was investigated. The nanorod is single-crystalline wurtzite structure with [0 0 0 1] growth direction determined by the transmission electron microscope. The aligned ZnO arrays were obtained directly on the glass substrates by adjusting the temperatures and the withdrawal speeds, without seed-layer or template assistant. A thicker oriented ZnO nanorod arrays was obtained at proper experimental conditions by adding dip-coating layers. Room temperature photoluminescence spectrum exhibits an intensive UV emission with a weak broad green emission as well as a blue double-peak emission located at 451 and 468 nm, respectively. Further investigation results show that the difference in the alignment of nanorods ascribes to the different orientations of the nanoparticles-packed film formed prior to nanorods on the substrate. Well ordered ZnO nanorods are formed from this film with good c-axis orientation. Our study is expected to pave a way for direct growth of oriented nanorods by low-cost solution approaches.  相似文献   

15.
Well-controlled ZnO nanowire arrays have been synthesized using the hydrothermal method, a low temperature and low cost synthesis method. The process consists of two steps: the ZnO buffer layer deposition on the substrate by spin-coating and the growth of the ZnO nanowire array on the seed layer. We demonstrated that the microstructure and the morphology of the ZnO nanowire arrays can be significantly influenced by the main parameters of the hydrothermal method, such as pH value of the aqueous solution, growth time, and solution temperature during the ZnO nanowire growth. Scanning electron microscopy observations showed that the well oriented and homogeneous ZnO nanowire arrays can be obtained with the optimized synthesis parameters. Both x-ray diffraction spectra and high-resolution transmission electron microscopy (HRTEM) observations revealed a preferred orientation of ZnO nanowires toward the c-axis of the hexagonal Wurtzite structure, and HRTEM images also showed an excellent monocrystallinity of the as-grown ZnO nanowires. For a deposition temperature of 90 °C, two growth stages have been identified during the growth process with the rates of 10 and 3 nm/min, respectively, at the beginning and the end of the nanowire growth. The ZnO nanowires obtained with the optimized growth parameters owning a high aspect ratio about 20. We noticed that the starting temperature of seed layer can seriously influence the nanowire growth morphology; two possible growth mechanisms have been proposed for the seed layer dipped in the solution at room temperature and at a high temperature, respectively.  相似文献   

16.
Boron doped ZnO nanorods were fabricated by hydrothermal technique on silicon substrate covered with a ZnO seed layer. It is found that the concentration of boric acid in the reaction solution plays a key role in varying the morphology and properties of the products. The growth rate along the [0 0 0 1] orientation (average size in diameter) of the doped ZnO nanorods decreased (increased) with the increase of boric acid concentration. Based on the results of XRD, EDX and XPS, it is demonstrated that the boron dopants tend to occupy the octahedral interstice sites. The photoluminescence of the ZnO nanorods related to boron doping are investigated.  相似文献   

17.
High-quality oriented ZnO films were prepared on silicon and quartz glass by sol-gel, assisted with a ZnO seed layer. The effects of the seed layer on the orientation, morphology and optical properties of ZnO films were investigated. Results show that the seed layer can effectively induce the growth of high-quality oriented ZnO films on two substrates, and the effectiveness of the seed layer strongly depends on preparation conditions, i.e., the spin-coating layer number and the preheating temperature. ZnO films with five layers on the seed layer preheated at 500 °C exhibit the single (0 0 2) orientation, which is much stronger than that on the flat substrate. Additionally, ZnO films on the seed layer show a denser internal structure and higher optical quality than that on the flat substrate. At ten layers, however, ZnO films on the seed layer show the multiple-orientation, which is similar to that on the flat substrate. Finally, the physical mechanism underlying the growth behavior of ZnO films assisted with the seed layer was discussed.  相似文献   

18.
Nanoparticles co-sensitized nanorods were designed and prepared by assembled CdS and PbS nanoparticles over ZnO nanorods using successive ionic layer adsorption and reaction (SILAR) method. The results showed that the uniform CdS and PdS nanoparticles could be deposited on the lateral and top of the ZnO nanorods when the precursor concentration was 0.05 M and 0.02 M, respectively. Solar cells based on CdS and PbS nanoparticles sensitized ZnO nanorods arrays were assembled successfully. A cell efficiency of 0.38% was obtained in ZnO/CdS/PbS in comparison with ZnO/PbS/CdS mainly due to the stepwise band edge structure constructed in this system except the coverage density of nanoparticles.  相似文献   

19.
采用化学沉淀法,以硝酸锌和六次亚甲基四胺的水溶液为生长溶液,在涂覆氧化锌晶种层的玻璃衬底上制备了定向生长的氧化锌纳米棒阵列,并研究了添加剂聚乙烯亚胺的浓度对氧化锌纳米棒形貌和结构的影响。X射线衍射和场发射扫描电镜的结果表明,合成的氧化锌纳米棒阵列较为均匀致密,具有六方纤锌矿结构,且有沿(002)晶面择优生长的特性;随着聚乙烯亚胺浓度的增加,氧化锌纳米棒的直径减小,直径分布趋于均匀,且氧化锌纳米棒的形貌也从锥状转变为柱状结构;另外,聚乙烯亚胺的加入对氧化锌的生长速度具有抑制作用,当聚乙烯亚胺的浓度增加至0.012 mol·L-1时,无氧化锌阵列生长。对氧化锌纳米棒阵列进行了拉曼光谱表征,结果表明,随着溶液中聚乙烯亚胺浓度的增加,氧化锌纳米棒的氧空位缺陷减少。最后,对聚乙烯亚胺浓度对氧化锌纳米阵列影响的机理进行了探讨。  相似文献   

20.
Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their appli- cations in enhancing light trapping. Enhanced light trapping can result in more effective absorption in solar cells, thus leading to higher short-circuit current density and conversion efficiency. We develop randomly distributed and modified ZnO nanorods, which are designed and fabricated by the following processes: the deposition of a ZnO seed layer on sub- strate with sputtering, the wet chemical etching of the seed layer to form isolated islands for nanorod growth, the chemical bath deposition of the ZnO nanorods, and the sputtering deposition of a thin Al-doped ZnO (ZnO:Al) layer to improve the ZnO/Si interface. Solar cells employing the modified ZnO nanorod substrate show a considerable increase in solar energy conversion efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号