首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corn-like cellulose nanocrystals/silver (CNC/Ag) nanocomposites were prepared by formic acid/hydrochloric acid hydrolysis of commercial microcrystalline cellulose (MCC), and redox reaction with silver ammonia aqueous solution (Ag(NH3)2(OH)) in one-pot green synthesis, in which the preparation and modification of CNCs were performed simultaneously and the resultant modified CNCs could be as reducing, stabilizing and supporting agents for silver nanoparticles. The influences of the Ag+ ion concentrations on the morphology, microstructure, and properties of the CNC/Ag nanocomposites were investigated. It is found that corn-like CNC/Ag nanocomposites containing Ag nanoparticles with diameter of about 20–40 nm were obtained. Compared to the MCCs, high crystallinity of 88.5 % and the maximum degradation temperature (T max) of 364.5 °C can be achieved. Moreover, the CNC/Ag nanocomposites showed strong antibacterial activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Furthermore, such nanocomposites can act as bifunctional nanofillers to improve thermal stability, mechanical property, and antibacterial activity of commercial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(lactic acid).  相似文献   

2.
Silver nanoparticles have been prepared using hydrogen gas as the reducing agent for silver nitrate and poly(vinyl pyrrolidone) as the capping agent; the reaction was carried out at 70 °C for 3 h. The size of the nanoparticles was found to be about 20 nm as analyzed using transmission electron micrographs. The X-ray diffraction pattern revealed the face-centered cubic (fcc) structure of silver nanoparticles. The linear absorption of Ag nanoparticles, α, is obtained about 3.71 cm−1. The non-linear refractive indices of silver nanoparticles were defined by the z-scan technique using CW He-Ne laser (λ = 632.8 nm) at different incident intensities. The magnitude of non-linear refractive index (n2) was measured to be in the order of 10−7 (cm2/W) with a negative sign. Therefore self-defocusing phenomena is taking placed for Ag nanoparticles.  相似文献   

3.
The silver nanoparticles were prepared on the glassy carbon (GC) electrode, modified with p-iso propyl calix[6]arene, by preconcentration of silver ions in open circuit potential and followed by electrochemical reduction of silver ions. The stepwise fabrication process of Ag nanoparticles was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The prepared Ag nanoparticles were deposited with an average size of 70 nm and a homogeneous distribution on the surface of electrode. The observed results indicated that the presence of calixarene layer on the electrode surface can control the particle size and prevent the agglomeratione and electrochemical deposition is a promising technique for preparation of nanoparticles due to its easy-to-use procedure and low cost of implementation. Cyclic voltammetry experiments showed that Ag nanoparticles had a good catalytic ability for the reduction of hydrogen peroxide (H2O2). The effects of p-isopropyl calix[6]arene concentration, applied potential for reduction of Ag+, number of calixarene layers and pH value on the electrocatalytic ability of Ag nanoparticles were investigated. The present modified electrode exhibited a linear range from 5.0 × 10−5 to 6.5 × 10−3 M and a detection limit 2.7 × 10−5 M of H2O2 (S/N = 3) using amperometric method.  相似文献   

4.
A one-step simple synthesis of silver colloid nanoparticles with controllable sizes is presented in this research. In the synthesis, an amino-terminated hyperbranched polymer (HBP-NH2) was applied as a stabilizer and a reductant. The syntheses, performed at various initial AgNO3 concentrations (0.28–0.56 g/l) in a 2 g/l HBP-NH2 aqueous solution, produced silver colloid nanoparticles having average sizes from 3 to 30 nm with narrow size distributions. The formation of silver colloid nanoparticles was characterized by Fourier Transform Infrared Spectrophotometry (FTIR), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), UV/Visible Absorption Spectrophotometry, and X-ray Diffraction (XRD) measurements. The results indicated that both particle size and the UV absorption are strongly dependent on the initial AgNO3 concentrations. The silver colloid nanoparticles, prepared with a 0.35 g/l AgNO3 aqueous solution in the presences of 2 g/l HBP-NH2, showed good antibacterial activities against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). A very low concentration of nano-silver (as low as 3.0 ug/ml Ag) also gave excellent antibacterial performance.  相似文献   

5.
The 3D scaffold type biocomposites of gelatin/silver nanoparticles were prepared through the silver nanoparticles (Ag NPs) formation in gelatin solution using solution plasma process (SPP) and their antifungal activity was evaluated. The mixture of 3% gelatin solution and silver precursor (AgNO3; 1–10 mM) was subject to discharge at high voltage (1600 V) under the controlled conditions to form the suspension of Ag NPs in the gelatin matrix. The freeze-drying process of lyophilization was employed to fabricate the 3D scaffold type biocomposite of gelatin/Ag NPs from the suspension. The water-insoluble property was improved by cross-linking using UV-irradiation (λ = 254 nm for 15 min). The physical and chemical characteristics of the biocomposite were investigated using UV–vis spectroscopy, EDS, FE-SEM, and TEM. The results indicated that the 3D scaffold biocomposite of gelatin/Ag NPs had spherical shape with approximately 11–12 nm of diameter. The antifungal activity analysis suggested that the biocomposite with Ag NPs could inhibit the growth of Candida albicans as well as that of hyphae and spores of Aspergillus parasiticus significantly. MIC of the biocomposite for C. albicans and A. parasiticus was determined as 80 μg/ml and 240 μg/ml of Ag NPs, respectively. The growth inhibition of 92.8% was observed in the biocomposite with 10 mM Ag against C. albicans.  相似文献   

6.
A facile strategy has been developed for the preparation of bimetallic gold–silver (Au–Ag) nanocomposite films by alternating absorption of poly-(ethyleneimine)–silver ions and Au onto substrates and subsequent reduction of the silver ions. The composition, micro-structure and properties of the {PEI–Ag/Au}n nanocomposite films were characterized by ultraviolet visible spectroscopy (UV–vis), transmisson electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), surface enhanced Raman scattering (SERS) and cyclic voltammetry (CV). The UV–vis characteristic absorbances of {PEI–Ag/Au}n nanocomposite thin film increase almost linear with the number of bilayers, which indicates a process of uniform assembling. Appearance of a double plasmon bands in the visible region and the lack of apparent core–shell structures in the TEM images confirm the formation of bimetallic Au–Ag nanoparticles. The result of XPS also demonstrates the existence of Ag and Au nanoparticles in the nanocomposite films. TEM and FESEM images show that these Ag and Au nanoparticles in the films possess sphere structure with the size of 20–25 nm. The resulting {PEI–Ag/Au}n films inherit the properties from both the metal Ag and Au, which exhibits a unique performance in SERS and electrocatalytic activities to the oxidation of dopamine. As a result, the {PEI–Ag/Au}n films are more attractive compared to {PEI–Ag/PSS}n and {PEI/Au}n films.  相似文献   

7.
Nanostructured silver and linear carbon chain (LCC) particle water colloids were prepared by a pulsed laser ablation procedure. Sample's optical transmission response was investigated in the 190–900 nm range, the third-order nonlinear optical properties were studied using the z-scan method and a nanosecond laser. The silver nanoparticles induce a structural change in the LCC colloids: the mixed Ag and LCC optical absorption looses the signature of the short carbon chain maintaining the features attributable to the longer ones. The stability of LCC colloids and their nonlinear response are remarkably improved by the Ag nanoparticles addition to the carbon water colloids. The Ag nanoparticles induce a limiting threshold reduction, an increased nonlinear absorption coefficient β and a marked asymmetrical peak/valley profile of the (Ag:LCC)mix when compared to the LCC. All these nonlinear contributions determine the increase of the third order susceptibility, while maintaining a significantly high linear transmission value (75%) at 532 nm and high photostability. The magnitude of the nonlinear optical response of these nanohybrids makes them promising candidates for potential optoelectronic applications.  相似文献   

8.
A new route for silver electroless deposition on Si(1 0 0) substrate is developed based on the galvanic displacement process. The basic electroless bath contains NaF and AgNO3 with different concentrations. The morphologies of electrolessly deposited silver nanostructures, including silver nanowires and nanoparticles, are strongly dependent on the electrolyte composition. Adding an excess dosage of polyvinylpyrrolidone into the basic electrolyte yields final silver films of porous structures composed by multitudinous Ag nanoparticles. The porous silver films possess the surface hydrophobic property after the modification with n-dodecanethiol. Unidirectional wetting and spreading of a water droplet are also demonstrated on the patterned porous Ag films.  相似文献   

9.
Laser ablation of a silver (Ag) and/or gold (Au) target was performed in liquid ammonia (l-NH3) at 233 K using nanosecond laser pulses of 1064, 532 and 355 nm wavelengths. An “in situ” monitoring of the ablation process by UV/vis/NIR spectroscopy has shown the evolution of the surface plasmon extinction band of silver or gold nanoparticles and thus confirmed their formation. While sols of Au nanoparticles in l-NH3 are quite stable in air, those of Ag nanoparticles undergo oxidation to Ag(I) complexes with NH3 ligands. On the other hand, formation of solvated electrons, namely of the (e)NH3 solvates, has not been unequivocally confirmed under the conditions of our laser ablation/nanoparticle fragmentation experiment, since only very weak vis/NIR spectral features of these solvates were observed with a low reproducibility. Reference experiments have shown that the well-known chemical production of these solvates is hindered by the presence of Ag and Au plates. Ag and Au targets can thus possibly act as electron scavengers in our ablation experiments.  相似文献   

10.
In this investigation, a facile sonochemical route has been developed for the preparation of silver vanadium oxide (SVO) micro/nanorods by using silver salicylate and ammonium metavanadate as silver and vanadate precursor, respectively. Here, silver salicylate, [Ag(HSal)], is introduced as a new silver precursor to fabricate AgVO3 nanorods. The effect of numerous solvents and surfactants on the morphology and sonochemical formation mechanism of AgVO3 nanorods was studied. AgVO3 nanorods were characterized by SEM and TEM images, XRD patterns, FT-IR, XPS, and EDS spectroscopy. SEM, TEM, and XRD results showed that AgO nanoparticles were formed onto AgVO3 nanorods in the presence of ethanol, cyclohexanol, dimethylsulfoxide (DMSO), and acetone. By using polyethylene glycol (PEG-6000) and N,N-dimethylformamide (DMF) as organic additives, the thickness of AgVO3 nanorods decreased.  相似文献   

11.
《Current Applied Physics》2009,9(5):1097-1105
TiO2 nanoparticles doped with different Ag contents were prepared by a modified sol–gel method, using titanium tetraisopropoxide and silver nitrate as precursors and 2-propanol as solvent. Silver was incorporated into the TiO2 matrix via decomposition of AgNO3 during thermal treatment in different atmospheres. Effects of Ag doping on the crystallization and phase transition of the TiO2 nanoparticles were studied using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Raman spectroscopy techniques. While air annealing incorporates silver into TiO2 matrix in silver oxide form, annealing in nitrogen incorporates metallic silver into TiO2. Formation of silver oxide increases the thermal stability of the TiO2 particles. Silver oxide affects the crystallization process of TiO2 particles and the temperature of transition form anatase to rutile. On the other hand, presence of metallic silver in the samples annealed in nitrogen atmosphere decreases the temperature of phase transition of TiO2 nanoparticles.  相似文献   

12.
Silver nanoparticles (Ag NPs) were prepared via in situ reduction of silver nitrate (AgNO3) using polymeric micelles as nanoreactors without any additional reductant. The micelles were constructed from the amphiphilic star-shaped copolymer composed of poly(?-caprolactone) (PCL) segment, 2-(dimethylamino)ethyl methacrylate (DMAEMA or DMA) units and oligo(ethylene glycol)monomethyl ether methacrylate (OEGMA or OEG) units. The Ag NPs stabilized by those star-shaped copolymers were characterized using UV-vis spectrum, DLS, TEM and FTIR. It confirmed that PDMAEMA exhibited the reducing property unless pH was above 7. The Ag NPs were sphere-like with a diameter of 10-20 nm, which was independent of the architecture of the copolymer and AgNO3 concentration. Furthermore, the catalytic activity of these Ag NPs was investigated by monitoring the reduction of p-nitrophenol (4-NP) by NaBH4. The result showed that the Ag NPs formed by coordination reduction can be effectively applied in catalytic reaction.  相似文献   

13.
This paper aims to study fabrication and characterization of silver/titanium oxide composite nanoparticle through sonochemical process in the presence of ethylene glycol with alkaline solution. By using ultrasonic irradiation of a mixture of silver nitrate, the dispersed TiO2 nanoparticle in ethylene glycol associated with aqueous solution of sodium oxide yields Ag/TiO2 composite nanoparticle with shell/core-type geometry. The powder X-ray diffraction (XRD) of the Ag/TiO2 composites showed additional diffraction peaks corresponding to the face-centered cubic (fcc) structure of silver crystallization phase, apart from the signals from the cores of TiO2. Transmission electron microscopy (TEM) images of Ag/TiO2 composites, which average particle size is roughly 80 nm, reveal that the titanium oxide coated by Ag nanoparticle with a grain size of about 2–5 nm. Additionally, the formation of silver nanoparticles on TiO2 was monitored by ultraviolet visible light spectrophotometer (UV–Vis). As measured the optical absorption spectra of as-synthesized Ag nanoparticle varying with time, the mechanism of surface formatting silver shell on the cores of TiO2 could be explored by autocatalytic reaction; the conversion of Ag particle from silver ion is 98% for the reaction time of 1000 s; and the activity energy of synthesizing Ag nanoparticles on TiO2 is 40 kJ/mol at temperature ranging from 5 to 25 °C. Hopefully, this preliminary investigation could be used for mass production of composite nanoparticles assisted by ultrasonic chemistry in the future.  相似文献   

14.
The objective of this work is to investigate the effect of Ag nanoparticles on critical current of YBa2Cu3O7?δ (YBCO) superconductor. Ag nanoparticles with different particle sizes from 30 to 1000 nm were prepared through the chemical reduction of AgNO3 in an alcohol solution. Then, samples of YBCO superconductors were doped by 1 and 2 wt.% of Ag nanoparticles with different sizes. Samples were characterized with XRD, SEM and EDX measurements. Critical current measurements were performed using a standard four-probe technique at liquid nitrogen temperature. The results showed by increasing of Ag nanoparticles up to 700 nm the Jc increases, but decreases by further increase in Ag particles size. The critical current enhancement is attributed to the improved connectivity between the grain boundaries and better crystallization of the grains.  相似文献   

15.
Cu–Ag core–shell particles were fabricated from Cu particles and silver sulphate with the environmental-friendly TA (tartaric acid, C4H6O6) as reducing and chelating agent in an aqueous system. The influences of [TA]/[Ag] and [Ag]/[Cu] molar ratios on the formation of Ag coatings on the Cu particles were investigated. The SEM images and SEM–EDS analyses showed that [TA]/[Ag] = 0.5 and [Ag]/[Cu] ≥0.2, the Cu particles were coated with uniform Ag nanoparticles. XRD analyses revealed that for these Cu–Ag particles heated at 250 °C, the oxidation of Cu was significantly reduced. Both anti-Staphylococcus aureus (Gram-positive) and anti-Escherichia coli (Gram-negative) characteristics of this Cu–Ag composite particles showed satisfactory antibacterial ability. The characteristics of the composite Cu–Ag particles were discussed in detail.  相似文献   

16.
Controlled photodeposition of silver nanoparticles (AgNP) on titania coatings using two different sources of UV light is described. Titania (anatase) thin films were prepared by the sol-gel dip-coating method on silicon wafers. AgNPs were grown on the titania surface as a result of UV illumination of titania films immersed in aqueous solutions of silver nitrate. UV xenon lamp or excimer laser, both operating at the wavelength 351 ± 5 nm, was used as illumination sources. The AFM topography of AgNP/TiO2 nanocomposites revealed that silver nanoparticles could be synthesized by both sources of illumination, however the photocatalysis carried out by UV light from xenon lamp illumination leads to larger AgNP than those synthesized using the laser beam. It was found that the increasing concentration of silver ions in the initial solution increases the number of Ag nanoparticles on the titania surface, while longer time of irradiation results the growth of larger size nanoparticles. Antibacterial tests performed on TiO2 covered by Ag nanoparticles revealed that increasing density of nanoparticles enhances the inhibition of bacterial growth. It was also found that antibacterial activity drops by only 10-15% after 6 cycles compared to the initial use.  相似文献   

17.
Pulsed laser ablation in liquid media (PLALM) is a prominent technique for the controlled fabrication of nanomaterials via rapid reactive quenching of ablated species at the interface between the plasma and liquid. Results on nanoparticles and nanocrystals formed by PLALM of silver (Ag) and antimony (Sb) solid targets in different liquid environments (Sodium Dodecyl Sulfate, distilled water) are presented. These experiments were done by irradiating solid targets of Ag and Sb with a nanosecond pulsed Nd:YAG laser output of wavelength 532 nm. Nanoparticles of silver and nanocrystals of antimony oxide (Sb2O3) obtained were characterized using UV-Vis spectrometry, Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), X-ray Energy Dispersion Analysis (EDAX) and X-ray diffractometry (XRD). The morphology of nanomaterials formed is studied as a function of surfactant environment. The silver nanoparticles obtained were spherical of size in the order of 10–35 nm in solution of SDS having different concentrations. In case of the Sb target, ablation was performed in two different molarities of SDS solution and distilled water. Nanocrystals of Sb2O3 in powder form having cubic and orthorhombic phases were formed in SDS solution and as fibers of nanocrystals of cubic Sb2O3 in distilled water.  相似文献   

18.
In this work, water soluble silver nanoparticles stabilized by biomacromolecule, were produced through using an aqueous solution of silver nitrate with Bovine Serum Albumin (BSA) under different reducing agents (such as sodium borohydride, hydrazine, N,N-dimethyl formamide) at the room temperature, where BSA provided the main function to form monodispersed silver nanoparticles. UV–vis spectroscopy, Fluorescence spectra, TEM and HR-TEM are used to characterize the BSA-capped silver nanoparticles under different condition. The results show that the formed silver nanoparticles have different size and morphology under the three different reducing agents. Moreover, the fluorescence intensity of BSA was drastically quenched in presence of Ag nanoparticles from the results of fluorescence spectra. Furthermore, the surface-enhanced Raman scattering effects of the formed silver nanoparticles were also displayed and we made a comparison under three different reducing agents.  相似文献   

19.
A new type of multicoated silica/zirconia/silver (SiO2/ZrO2/Ag) core-shell composite microspheres is synthesized in this paper. In the process, ZrO2-decorated silica (SiO2/ZrO2) core-shell composites were firstly fabricated by the modification of zirconia on silica microspheres through the hydrolysis of zirconium precursor. Subsequently, on SiO2/ZrO2 composite cores, silver nanoparticles were introduced via ultrasonic irradiation and acted as “Ag seeds” for the formation of integrate silver shell by further reduction of silver ions using formaldehyde as reducer. The resulting samples were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared, energy-dispersive X-ray, and UV-vis spectroscopy, indicating that zirconia and silver layers were successfully coated on the surfaces of silica microspheres.  相似文献   

20.
Bimetallic and trimetallic nanoparticles have attracted significant attention in recent times due to their enhanced electrochemical and catalytic properties compared to monometallic nanoparticles. The numerical calculations using Mie theory has been carried out for three-layered metal nanoshell dielectric–metal–metal (DMM) system consisting of a particle with a dielectric core (Al@Al2O3), a middle metal Ag (Au) layer and an outer metal Au (Ag) shell. The results have been interpreted using plasmon hybridization theory. We have also prepared Al@Al2O3@Ag@Au and Al@Al2O3@AgAu triple-layered core–shell or alloy nanostructure by two-step laser ablation method and compared with calculated results. The synthesis involves temporal separations of Al, Ag, and Au deposition for step-by-step formation of triple-layered core–shell structure. To form Al@Ag nanoparticles, we ablated silver for 40 min in aluminium nanoparticle colloidal solution. As aluminium oxidizes easily in water to form alumina, the resulting structure is core–shell Al@Al2O3. The Al@Al2O3 particle acts as a seed for the incoming energetic silver particles for multilayered Al@Al2O3@Ag nanoparticles is formed. The silver target was then replaced by gold target and ablation was carried out for different ablation time using different laser energy for generation of Al@Al2O3@Ag@Au core–shell or Al@Al2O3@AgAu alloy. The formation of core–shell and alloy nanostructure was confirmed by UV–visible spectroscopy. The absorption spectra show shift in plasmon resonance peak of silver to gold in the range 400–520 nm with increasing ablation time suggesting formation of Ag–Au alloy in the presence of alumina particles in the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号