首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
We have investigated the control of photocatalytic behavior under deposited conditions of non-sintered target of different molar ratios with TiO2 and La2O3 from 1:0 to 1:2 for heavily La doping, and post-annealing temperature from 600 °C to 1000 °C for crystallizing by pulsed laser deposition. We have successfully crystallized heavily La-doped TiO2 films with post-annealing temperature over 800 °C and with molar ratio of TiO2:La2O3 over 1:1 on a quartz substrate. Heavily La-doped TiO2 films are observed the decomposition of methylene blue and a water-splitting reaction in photocatalytic behavior under Xe light irradiation. When stoichiometric La-doped TiO2 (TiO2:La2O3 = 1: 1) is synthesized with heat-treatment at 900 °C, the best results are obtained under photocatalytic behavior and pure La2Ti2O7 crystalline were obtained.  相似文献   

2.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser for applications in dye-sensitized solar cells (DSSCs). The films were deposited on SiO2 substrates either at room temperatures (RT) or heated to 200-400 °C. Under optimized conditions, transmission of ITO films in the visible (vis) range was above 89% for films produced at RT and 93% for the ones deposited at higher temperatures. Increasing the substrate temperature from RT to 400 °C enhances the transmission of TiO2 films in the vis-NIR from about 70% to 92%. High transmission (≈90%) was observed for the double layer ITO/TiO2 with a transmission cut-off above 900 nm. From the transmission data, the energies gaps (Eg), as well as the refractive indexes (n) for the films were estimated. n ≈ 2.03 and 2.04, respectively for ITO films and TiO2 film deposited at 400 °C in the visible region. Post-annealing of the TiO2 films for 3 h at 300 and 500 °C was performed to enhance n. The refractive index of the TiO2 films increases with the post-annealing temperature. The direct band gap is 3.6, 3.74 and 3.82 eV for ITO films deposited at RT, 200, and 400 °C, respectively. The TiO2 films present a direct band gap of 3.51 and 3.37 eV for as deposited TiO2 films and when annealed at 400 °C, respectively. There is a shift of about 0.1 eV between ITO and ITO/TiO2 films deposited at 200 °C. The shift decreases by half when the TiO2 film was deposited at 400 °C. Post-annealing was also performed on double layer ITO/TiO2.  相似文献   

3.
Porous TiO2 films were deposited on SiO2 pre-coated glass-slides by sol-gel method using octadecylamine (ODA) as template. The amount of ODA in the sol played an important role on the physicochemical properties and photocatalytic performance of the TiO2 films. The films prepared at different conditions were all composed of anatase titanium dioxide crystals, and TiO2 crystalline size got larger with increasing ODA amount. The maximum specific surface area of 41.5 m2/g was obtained for TiO2 powders prepared from titanium sol containing 2.0 g ODA. Methyl orange degradation rate was enhanced along with increasing ODA amount and reached the maximal value at 2.0 g addition of ODA. After 40 min of UV-light irradiation, methyl orange degradation rate reached 30.5% on the porous film, which was about 10% higher than that on the smooth film. Porous TiO2 film showed almost constant activity with slight decrease from 30.5% to 28.5% after 4 times of recycles.  相似文献   

4.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser. The films were deposited on SiO2 substrates heated at 200 and 400 °C. ITO and TiO2 films with uniform thicknesses of about 400 and 800 nm, respectively, over large areas were prepared. X-ray diffraction (XRD) analysis revealed that the ITO films are formed of highly orientated nanocrystals with an average particle size of 10-15 nm. Atomic force microscopy (AFM) observations indicate rough ITO films surfaces with average roughness of 26-30 nm. Pores were also observed. TiO2 films deposited on the prepared ITO films result less crystalline. Annealing at 300 and 500 °C for three consecutive hours promoted formation of TiO2 anatase phase, with crystal size of ∼6-7 nm. From the scanning transmission electron microscope (STEM) images, it can be seen that the TiO2 films deposited onto the prepared ITO films present a relatively high pore sizes with an average pore diameter of ∼40 nm and excellent uniformity. In addition, STEM cross-sectional analysis of our films showed a columnar structure but no evidence of voids in the structure. Therefore, films exhibited large surface area, well suited for dye-sensitized solar cells (DSSC) applications.  相似文献   

5.
The article reports on correlations between the process parameters of reactive pulsed dc magnetron sputtering, physical properties and the photocatalytic activity (PCA) of TiO2 films sputtered at substrate surface temperature Tsurf ≤ 180 °C. Films were deposited using a dual magnetron system equipped with Ti (Ø50 mm) targets in Ar + O2 atmosphere in oxide mode of sputtering. The TiO2 films with highly photoactive anatase phase were prepared without a post-deposition thermal annealing. The decomposition rate of the acid orange 7 (AO7) solution during the photoactivation of the TiO2 film with UV light was used for characterization of the film PCA. It was found that (i) the partial pressure of oxygen pO2 and the total sputtering gas pressure pT are the key deposition parameters influencing the TiO2 film phase composition that directly affects its PCA, (ii) the structure of sputtered TiO2 films varies along the growth direction from the film/substrate interface to the film surface, (iii) ∼500 nm thick anatase TiO2 films with high PCA were prepared and (iv) the structure of sputtered TiO2 films is not affected by the substrate surface temperature Tsurf when Tsurf < 180 °C. The interruption of the sputtering process and deposition in long (tens of minutes) pulses alternating with cooling pauses has no effect on the structure and the PCA of TiO2 films and results in a decrease of maximum value of Tsurf necessary for the creation of nanocrystalline nc-TiO2 film. It was demonstrated that crystalline TiO2 films with high PCA can be sputtered at Tsurf ≤ 130 °C. Based on obtained results a phase zone model of TiO2 films was developed.  相似文献   

6.
Silver nanorods with average diameters of 120-230 nm and aspect ratio of 1.7-5.0 were deposited on the surface of TiO2 films by photoelectrochemical reduction of Ag+ to Ag under UV light. The composite films prepared on soda-lime glass substrates were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the TiO2 film after UV irradiation in AgNO3 solution is composed of anatase phase TiO2 and metallic silver with face centered cubic structure. Other compounds cannot be found in the final films. The maximum deposition content of silver particles on the surface of TiO2 film was obtained with the AgNO3 concentration of 0.1 M. The kinetic growth rates of silver particles can be controlled by photocatalytic activity of TiO2 films. The studies suggest that the growth rates of silver particles increase with the enhancement of photocatalytic activity of TiO2 films. The maximum growth rate of silver particles loaded on TiO2 films can be up to 0.353 nm min−1 among samples 1#, 2# and 3#, while the corresponding apparent rate constant of TiO2 is 1.751 × 10−3 min−1.  相似文献   

7.
The effect of N2 treatment on the photocatalytic activity of Pt0/TiO2 was investigated. The results showed that after treatment at 500 °C in N2, 70% of the photocatalytic activity of 1.0 wt.% Pt0/TiO2 was lost by the evaluation of photocatalytic oxidation reaction of C3H6. Transmission electron microscopy (TEM) and Ar+ ion sputtering tests revealed that in the course of high-temperature N2 treatment, the size of Pt0 particles on TiO2 increases and a strong interaction between metal and support, i.e. Pt0 particles encapsulated by TixOy, happens, which are the reasons for the deactivation of Pt0/TiO2 photocatalyst treated by high-temperature N2.  相似文献   

8.
TiO2 photocatalysts deposited on activated carbon (TiO2/AC) were prepared by dip-hydrothermal method at 180 °C using peroxotitanate as a precursor, then calcinated at 300-800 °C. The samples were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and the nitrogen absorption. Their photocatalytic activity was evaluated by degradation of methyl orange (MO). The results showed that TiO2 particles of anatase type were well deposited on the activated carbon surface. TiO2/AC calcinated at 600 °C exhibited the best photocatalytic performance. For the comparison, the same photocatalysis experiment was carried out for two mixtures of commercial TiO2 (Degussa P25) with AC and synthetic TiO2 with AC. It was found that the composite catalyst TiO2/AC was better than the two mixtures. Besides, different from fine powdered TiO2, the granular TiO2/AC photocatalysts could be easily separated from the bulk solution and reused; indeed, its photocatalytic ability was hardly decreased after a five-cycle for MO degradation. The kinetics of the MO degradation fitted well the Langmuir-Hinshelwood model.  相似文献   

9.
Anatase thin films (<200 nm in thickness) embedding Degussa P25 TiO2 were prepared by sol-gel method. TiO2-anatase thin films were deposited on a fiberglass substrate and then ground to obtain glass microrods containing the composite films. The film structure was characterized using Raman spectroscopy, atomic absorption and UV-vis spectrophotometry, and atomic force microscopy. The photocatalytic activity of the composite films, calcined at 450 °C, and the regeneration of the activity under the same experimental conditions, were assessed using gas chromatography to study the photodegradation of phenol, an industrial pollutant, in water under 365 nm irradiation. The film with 15.0 wt.% of P25 TiO2 was found to be more photoactive (54 ppm of degraded phenol at 6 h of illumination) than the other ones.  相似文献   

10.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

11.
Vermiculite was treated by sulfuric or nitric acid aqueous solutions with different concentration. These modified materials as the promising supports, were used to immobilize TiO2. TiO2 was prepared by the precursor, which was obtained by substituting partly isopropyl alcohol with Cl in titanium chloride {[Ti(IV)(OR)nClm] (n = 2-3, m = 4 − n)}. The TiO2/vermiculite composites were characterized by X-ray diffraction, scanning electron microscopy, and the nitrogen absorption. Their photocatalytic activity was evaluated by removal of methylene blue (MB). The pure anatase type crystalline phase was well deposited on the supports. The concentrations of acid for treatment had a significant influence on pore sizes and surface area of vermiculite. The treatment process changed microstructure of vermiculite, modified its characteristics, and farther improved the catalytic activity and absorption capacity of TiO2/vermiculite composites. The treatment effect of nitric acid was superior to that of sulfuric acid.  相似文献   

12.
We deposited SrCu2O2 (SCO) films on sapphire (Al2O3) (0 0 0 1) substrates by pulsed laser deposition. The crystallographic orientation of the SCO thin film showed clear dependence on the growth temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis showed that the film deposited at 400 °C was mainly oriented in the SCO [2 0 0] direction, whereas when the growth temperature was increased to 600 °C, the SCO film showed a dominant orientation of SCO [1 1 2]. The SCO film deposited at 500 °C was obvious polycrystalline, showing multi peaks from (2 0 0), (1 1 2), and (2 1 1) diffraction in the XRD spectrum. The SCO film deposited at 600 °C showed a band gap energy of 3.3 eV and transparency up to 80% around 500 nm. The photoluminescence (PL) spectra of the SCO films grown at 500 °C and 600 °C mainly showed blue-green emission, which was attributed to the intra-band transition of the isolated Cu+ and Cu+–Cu+ pairs according to the temperature dependent-PL analysis.  相似文献   

13.
The MAPLE technique has been used for the deposition of nanostructured titania (TiO2) nanoparticles thin films to be used for gas sensors applications. An aqueous solution of TiO2 nanoparticles, synthesised by a novel chemical route, was frozen at liquid nitrogen temperature and irradiated with a pulsed ArF excimer laser in a vacuum chamber. A uniform distribution of TiO2 nanoparticles with an average size of about 10 nm was deposited on Si and interdigitated Al2O3 substrates as demonstrated by high resolution scanning electron microscopy-field emission gun inspection (SEM-FEG). Energy dispersive X-ray (EDX) analysis revealed the presence of only the titanium and oxygen signals and FTIR (Fourier transform infra-red) revealed the TiO2 characteristic composition and bond. A comparison with a spin coated thin film obtained from the same solution of TiO2 nanoparticles is reported. The sensing properties of the films deposited on interdigitated substrates were investigated, too.  相似文献   

14.
《Applied Surface Science》2011,257(9):4227-4231
TiO2 represents one of the most important sol-gel materials, due to its photocatalytic properties, in the case of both powders and coatings. Nanostructured titania has been reported to be used in many applications in different fields ranging from optics to gas sensor via solar energy. Recent researches point out the existence of new procedures used in order to enhance the efficiency of the photocatalytic process. The metal ion doping is such an example. Two types of 2 wt.% Au containing TiO2 powders have been embedded in sol-gel vitreous TiO2 matrices. Au-doped TiO2 films have been prepared from these sols, by dipping procedure using quartz microscopic slides, as substrates. The relationship between the synthesis conditions and the properties of titania nanosized materials, such as thermal stability, phase composition, crystallinity, and the influence of dopant was investigated. The hydrophilic properties of the films were correlated with their structure, composition and surface morphology.  相似文献   

15.
Optical, structural and photocatalytic properties of TiO2 thin films obliquely deposited on quartz glass substrate using an electron-beam evaporation method were investigated. The photocatalytic activity of the films was evaluated by photodecomposition of methylene blue. An increase in incident deposition angle increased the porosity and surface roughness of the TiO2 films. As a result, the photocatalytic activity was enhanced with incident deposition angle up to 60°. However, a further increase in incident deposition angle to 75° reduced the photocatalytic activity due to a lack of the crystalline phase.  相似文献   

16.
Increasing environmental pollution caused by the volatile organic compounds due to their toxicity makes their removal imperative. So it is crucial to develop processes which can degrade these compounds effectively. The paper demonstrates that the photocatalytic activity of TiO2 toward the decomposition of gaseous benzene in a batch reactor can be greatly enhanced by loading TiO2 onto the surface of CexZr1−xO2 (x ≥ 0.25) using sol-gel technology. This research investigated the relationship between x amount and the photocatalytic activity of TiO2. The prepared photocatalysts were characterized by BET, XRD, UV-vis diffuse reflectance and XPS analyses. The specific surface area of photocatalyst decreases as x decreases. XRD results reveal the no peaks of titania were detected. Among the five catalysts prepared, only the binding energy values of Ti2p3/2 of TiO2/Ce0.5Zr0.5O2 shift toward lower value. The order of photocatalytic activity is TiO2/Ce0.5Zr0.5O2 > TiO2/Ce0.75Zr0.25O2 > TiO2/CeO2 ≈ TiO2/Ce0.25Zr0.75O2 > TiO2/ZrO2 ≈ TiO2. The mechanism role of Ceria-Zirconia mixed oxides in photocatalytic reaction was speculated.  相似文献   

17.
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO2), TA (bottom layer was pure TiO2, surface layer was Ag modified), TT (pure TiO2 thin film) and AA (TiO2 thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (Iph). LSV confirmed the existence of Ag0 state in the TiO2 thin film. SEM and XRD experiments indicated that the sizes of the TiO2 nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.  相似文献   

18.
The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.  相似文献   

19.
Epitaxial In2O3 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates by metalorganic chemical vapor deposition (MOCVD). The films were deposited at different substrate temperatures (450-750 °C). The film deposited at 650 °C has the best crystalline quality, and observation of the interface area shows a clear cube-on-cube epitaxial relationship of In2O3(1 0 0)||YSZ(1 0 0) with In2O3[0 0 1]||YSZ[0 0 1]. The Hall mobility of the single-crystalline In2O3 film deposited at 650 °C is as high as 66.5 cm2 V−1 s−1 with carrier concentration of 1.5 × 1019 cm−3 and resistivity of 6.3 × 10−3 Ω cm. The absolute average transmittance of the obtained films in the visible range exceeds 95%.  相似文献   

20.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号