首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SiO2-coated Ca2BO3Cl:Eu2+ phosphors were prepared by the sol–gel method in order to enhance the chemical and thermal stabilities of Ca2BO3Cl:Eu2+ phosphor. The phase structures, microstructures and luminescence properties were studied by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectrometer, respectively. The emission intensity of SiO2-coated Ca2BO3Cl:Eu2+ phosphor decreased a little compared to that of the uncoated phosphor. The moisture resistances of the phosphors were comparatively examined by the aging treatment experiment in the water, and the thermal stability was studied by the temperature dependent photoluminescence spectra. The results indicated that SiO2 coating on the surface of the phosphor particles improved the moisture-resistance and thermal stability to a large extent.  相似文献   

2.
Orange-emitting SrS:Eu2+ phosphors were coated with nanoscale SiO2 and their photoluminescence (PL) degradation behavior in moist air was investigated. The SiO2 coating was obtained by sol-gel process using diethoxydimethylsilane (DEDMS) and the coating content was varied from 0.5 to 2 wt%. The coatings were composed of a uniform, continuous, and amorphous SiO2 layer of 30-50 nm thickness and the coating thickness was not varied significantly with the coating content. No peak shift and no decrease of PL intensity were observed after coating. The PL intensity of the coated phosphors decreased to ∼75% of the original value after 10 h exposure to moist air, while the uncoated phosphor decreased to ∼33%, which indicates the improved moisture resistance of the nanoscale SiO2 coated SrS:Eu2+ phosphors.  相似文献   

3.
Low thermal quenching and high-efficiency Ca3Sc2Si3O12:Ce3+ (CSSO:Ce3+) phosphors with co-doping Tb3+ ion were prepared by a solid state method and the properties of these phosphors were investigated. The results showed that co-doping of Tb3+ not only enhances the photoluminescence remarkably and decreases the thermal quenching of the phosphor, but also heightens the performances of the LEDs fabricated with the phosphor. A high-efficiency and low color temperature white LED was fabricated with the prepared CSSO:1%Ce3+, 0.5%Tb3+ and a red phosphor, indicating that CSSO:1%Ce3+,0.5%Tb3+ phosphor is a suitable green phosphor for the fabrication of high-efficiency white LEDs.  相似文献   

4.
CaZrSi2O7 (CZS), a modification of the thortveitite family, was prepared as a polycrystalline powder material by the conventional solid-state reaction method. Structural, thermal and photoluminescence (PL) properties of the prepared material were investigated in order to evaluate its potentiality. XRD patterns confirm the monoclinic phase of CaZrSi2O7: Eu2+ phosphors.. Emissions arising from transitions between the 5d and 4f orbital gaps of Eu2+ are manifested in the broadband excitation and emission spectra with major peaks at 363 and 512 nm, respectively. The excitation wavelength matches well with that of the emission of the ultraviolet-light emitting diode (UV-LED). Concentration quenching occurs when the Eu2+ concentration is beyond 0.05 and the dipole-dipole interaction was the reason for the corresponding quenching mechanism. The temperature dependence of emission intensity of CZS: Eu2+ phosphor was investigated and it showed better thermal stability than the standard YAG: Ce3+ phosphor.  相似文献   

5.
Jin-Ho Yoon  Jung-Sik Kim 《Ionics》2010,16(2):131-135
The present study examined the photocatalytic reaction of titanium dioxide (TiO2)-coated, phosphor composite particles. Nanocrystalline TiO2 layers were directly coated on the alkaline earth aluminate phosphor (CaAl2O4:Eu2+,Nd3+) particles by a sol-gel processing method and their photocatalytic reaction was analyzed according to the degradation of methylene blue aqueous solution under visible light irradiation. Compared with pure TiO2, the TiO2-coated phosphor powders showed a different photocatalytic mechanism and much faster photocatalytic reactivity under visible irradiation than that of pure TiO2, which was almost negligible. The mechanism of the photocatalytic reactivity for the TiO2-phosphor composite was discussed in terms of the energy band structure and phosphorescence. In addition, the TiO2-coated phosphor powders were characterized by X-ray diffraction and transmission electron microscopy.  相似文献   

6.
The Eu-doped CaTiO3 particles with a good crystallinity were prepared via sol-gel method. The phosphors showed a strong red emission corresponding to 5D07F2 (618 nm) of Eu3+ under the near-ultraviolet excitation (400 nm). X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), photoluminescent (PL) analysis and Brunauer-Emmett-Teller (BET) specific surface area measurement were utilized to characterize the CaTiO3:Eu3+ particles. The concentration quenching and thermal quenching of the samples were discussed as well. The optimal concentration and the calcination temperature were 16 mol% of Eu3+ and 1400 °C for these phosphors, and the possible reason was discussed as well. CaTiO3:Eu3+ is a promising red phosphor under near-ultraviolet excitation for various applications.  相似文献   

7.
Intense red emitting phosphors MGd2(MoO4)4: Eu3+ (M=Ca, Sr and Ba) have been synthesized by the simple sol-gel technique. The formation processes and the phase impurity of phosphors are characterized by thermogravimetry-differential thermal analysis (TG-DTA) and power X-ray diffraction (XRD). The narrower size distribution and the regular shape of the phosphor particles are also measured by Field emission scanning electronic microscopy (FE-SEM). Photo-luminescent properties of the phosphors are performed at room temperature. Their excitation spectra present strong absorption at 395 nm near-UV light and 465 nm blue light, which match well with commercial LED chips. The phosphors exhibit satisfactory and excellent red light dominated by 616 nm and their photoluminescence intensity is about 3-4 times stronger than that of phosphor YAG under the 465 nm excitation. In addition, the optimal concentrations of Eu3+ for phosphors MGd2(MoO4)4 (M=Ca, Sr and Ba) have also been determined.  相似文献   

8.
This letter reports the novel three emission bands based on phosphate host matrix, KBaPO4 doped with Eu2+, Tb3+, and Sm3+ for white light-emitting diodes (LEDs). The phosphors were synthesized by solid-state reaction and thermal stability was elucidated by measuring photoluminescence at higher temperatures. Eu2+-doped KBaPO4 phosphor emits blue luminescence with a peak wavelength at 420 nm under maximum near-ultraviolet excitation of 360 nm. Tb3+-doped KBaPO4 phosphor emits green luminescence with a peak wavelength at 540 nm under maximum near-ultraviolet excitation of 370 nm. Sm3+-doped KBaPO4 phosphor emits orange-red luminescence with a peak wavelength at 594 nm under maximum near-ultraviolet excitation of 400 nm. The thermal stabilities of KBaPO4:Ln (Ln=Eu2+, Tb3+, Sm3+), in comparison to commercially available YAG:Ce3+ phosphor were found to be higher in a wide temperature range of 25-300 °C.  相似文献   

9.
Low temperature quenching and high efficiency CaSc2O4:Ce3+ (CSO:Ce3+) phosphors co-doped with Tm3+, La3+ and Tb3+ ions were prepared by a solid state method and the phase-forming, morphology, luminescence and application properties of these phosphors were investigated. The results showed that co-doping of Tm3+, La3+ and Tb3+ ions can improve the luminescence properties and decrease temperature quenching of CSO:Ce3+ phosphor remarkably. High efficiency green-light-emitting diodes were fabricated with the prepared phosphors and InGaN blue-emitting (∼460 nm) chips. The good performances of the green-light-emitting LEDs made from co-doped CSO:Ce3+ phosphors confirm the luminescence enhancement and indicate that Tm3+, La3+ and Tb3+ co-doped CSO:Ce3+ phosphors are suitable candidates for the fabrication of high efficiency white LEDs.  相似文献   

10.
Sodium europium double tungstate [NaEu(WO4)2] phosphor was prepared by the solid-state reaction method. Its crystal structure, photoluminescence properties and thermal quenching characteristics were investigated aiming at the potential application in the field of white light-emitting diodes (LEDs). The influences of Sm doping on the photoluminescence properties of this phosphor were also studied. It is found that this phosphor can be effectively excited by 394 or 464 nm light, which nicely match the output wavelengths of near-ultraviolet (UV) or blue LED chips. Under 394 or 464 nm light excitation, this phosphor exhibits stronger emission intensity than the Y2O2S:Eu3+ or Eu2+-activated sulfide phosphor. The introduction of Sm3+ ions can broaden the excitation peaks at 394 and 464 nm of the NaEu(WO4)2 phosphor and significantly enhance its relative luminance under 400 and 460 nm LEDs excitation. Furthermore, the relative luminance of NaEu(WO4)2 phosphor shows a superior thermal stability compared with the commercially used sulfide or oxysulfide phosphor, and make it a promising red phosphor for solid-state lighting devices based on near-UV or blue LED chips.  相似文献   

11.
In this paper, YVO4: 1%Eu3+ phosphor was synthesized via solid state method at 1100 °C. Then TEOS was used as the source of silica, to coat the phosphors, using sol–gel approach. HRTEM analysis confirmed the formation of adhered and smooth coating layer with the thickness of 40–50 nm. From the experiments and characterizations, we found that although the amounts of added SiO2 to the phosphors were not remarkable, but it resulted in enhancement of photoluminescence properties. Interestingly, under the excitation wavelength of 310 nm, the efficiency of the phosphors increased by about 20%. Also, a considerable effect of coating layer on decrease in surface oxygen vacancies was studied using ESR technique. Finally it was found that SiO2 coating of YVO4:Eu3+ phosphors, improves both chemical stability and thermal quenching, effectively.  相似文献   

12.
A series of silica doped with different mol percentages of Ce3+ concentration was synthesized using a sol-gel method to determine the dependence of photoluminescence wavelengths and intensity on the concentrations of the dopants. Sol-gel glasses are porous networks that have been densified through chemical processing and heat treatment. Rare-earths (REs) are insoluble in silica; due to this insolubility RE ions in silicate glasses enter as network modifiers and compete for non-bridging oxygen in order to complete their coordination. The morphological, structural, thermal and optical properties of the phosphors were characterized by X-ray diffraction, scanning electron microscopy, UV-vis absorption, photoluminescence, thermogravimetric analyses and differential scanning calorimeter. Silica (SiO2) gel containing Ce3+ ions was sputter coated with Au (gold) in order to monitor surface morphology of the samples. The highest emission intensity was found for the sample with a composition of 0.5 mol% Ce3+. Cerium doped silica glasses had broad blue emission corresponding to the 2D3/2-2FJ transition at 448 nm but exhibited apparent concentration quenching above concentrations of 0.5 mol% Ce3+.  相似文献   

13.
A series of blue-emitting Ca2 ? xEuxPO4Cl phosphors were synthesized by a solid state method in a reducing atmosphere. The factors those affect the structure and the photoluminescence (PL) intensities of phosphors, including the dosage of chlorine source CaCl2, reaction time and annealing temperature, have been investigated in detail. X-ray diffraction (XRD) and photoluminescence measurements were performed to testify the crystal structure and luminescent properties. The optimal Eu2+ concentration was determined, and the mechanism of the concentration quenching was predominated by dipole–dipole interaction. The present phosphor exhibits a strong absorption in the near-UV region, emits an intense blue emission centered at 451 nm and presents excellent thermal stability, suggesting that the phosphor is competitive as a promising blue-emitting phosphor for near ultraviolet (n-UV) light-emitting diodes (LEDs).  相似文献   

14.
Europium doped LaMgAl11O19 phosphor was prepared by the combustion method. The as-prepared and post-treated (1350 °C 10 h 5% H2+95% N2) phosphors were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques. XRD patterns show that LaMgAl11O19:Eu phosphors have hexagonal structure. FT-IR spectrum exhibits absorption bands corresponding to the stretching vibration of AlO4 and AlO6. Morphological studies reveal that this phosphor has faceted plates of varying sizes and shapes. The as-prepared LaMgAl11O19:Eu phosphor consists of both Eu3+ and Eu2+ ions. The phosphor exhibits a bright blue emission at 450 nm (4f65d→4f7 transition of Eu2+). On post-treating the phosphor we are able to enhance the blue emission efficiency by 330%. The process was detected from the evolution of excitation, emission and EPR spectra and the results are discussed.  相似文献   

15.
Polycrystalline KCaSO4Cl:Eu, Dy, KCaSO4Cl:Ce, Dy and KCaSO4Cl:Ce, Mn phosphors prepared by a solid state diffusion method have been studied for its photoluminescence (PL) characteristics. The presence of two overlapping bands at around 400 and 450 nm in the PL emission spectra of the phosphor suggests the presence of Eu2+ in the host compound occupying two different lattice sites. The effects of co-doping on the photoluminescence (PL) characteristics of KCaSO4Cl:Eu or Ce phosphors have been studied. The decrease in peak intensity of the phosphor on co-doping it with Dy gives an insight into the emission mechanism of the phosphors, which involves energy transfer from Eu2+→Dy3+, Ce3+→Dy3+ and Ce3+→Mn2+.  相似文献   

16.
A flux fusion method was used to obtain the various sizes of Eu3+-activated Y2O3 red phosphors. The flux material was selected as an independent variable to control the physical properties of phosphor particles and their effects on the morphology and size distribution of phosphors were examined by scanning electron microscopy. The concentration of the flux materials and synthetic temperature were optimized for maximal photoluminescence intensity. Fluoride-based flux materials were found to work for the crystal formation of Eu3+-activated Y2O3. In particular, when a BaF2 flux was used during the reaction at 1450 °C for 3 h, the photoluminescence (PL) intensity of Eu3+-activated Y2O3 was 25% higher than that without a flux and spherical phosphors had a mean particle size of 4-5 μm. The morphology and size distribution of the synthesized Eu3+-activated Y2O3 phosphor were predominantly dependent upon the type and concentration of flux material and synthetic temperature.  相似文献   

17.
The Eu2+-doped Ba3Si6O12N2 green phosphor (EuxBa3−xSi6O12N2) was synthesized by a conventional solid state reaction method. It could be efficiently excited by UV-blue light (250-470 nm) and shows a single intense broadband emission (480-580 nm). The phosphor has a concentration quenching effect at x=0.20 and a systematic red-shift in emission wavelength with increasing Eu2+ concentration. High quantum efficiency and suitable excitation range make it match well with the emission of near-UV LEDs or blue LEDs. First-principles calculations indicate that Ba3Si6O12N2:Eu2+ phosphor exhibits a direct band gap, and low band energy dispersion, leading to a high luminescence intensity. The origin of the experimental absorption peaks is clearly identified based on the analysis of the density of states (DOS) and absorption spectra. The photoluminescence properties are related to the transition between 4f levels of Eu and 5d levels of both Eu and Ba atoms. The 5d energy level of Ba plays an important role in the photoluminescence of Ba3Si6O12N2:Eu2+ phosphor. The high quantum efficiency and long-wavelength excitation are mainly attributed to the existence of Ba atoms. Our results give a new explanation of photoluminescence properties and could direct future designation of novel phosphors for white light LED.  相似文献   

18.
YVO4:Eu3+,Bi3+ phosphors have been prepared by the high-temperature solid-state (HT) method and the Pechini-type sol-gel (SG) method. Spherical SiO2 particles have been further coated with YVO4:Eu3+,Bi3+ phosphor layers by the Pechini-type SG process, and it leads to the formation of core-shell structured SiO2/YVO4:Eu3+,Bi3+ phosphors. Therefore, the phase formations, structures, morphologies, and photoluminescence properties of the three types of as-prepared YVO4:Eu3+,Bi3+ phosphors were studied in detail. The average diameters for the phosphor particles are 2-4 μm for HT method, 0.1-0.4 μm for SG method, and 0.5 μm for core-shell structured SiO2/YVO4:Eu3+,Bi3+ particles, respectively. Photoluminescence spectra show that effective energy transfer takes place between Bi3+ and Eu3+ ions in each type of as-prepared YVO4:Eu3+,Bi3+ phosphors. Introduction of Bi3+ into YVO4:Eu3+ leads to the shift of excitation band to the long-wavelength region, thus the emission intensities of 5D0-7F2 electric dipole transition of Eu3+ at 615 nm upon 365 nm excitation increases sharply, which makes this phosphor a suitable red-emitting materials that can be pumped with near-UV light emitting diodes (LEDs).  相似文献   

19.
A novel deep-blue phosphor, Ba1.2Ca0.8SiO4:Ce3+, has been developed for white-light-emitting diodes. The phosphor exhibits two absorption bands at 280 and 325 nm, and an intense deep-blue emission peaking at 400 nm. With increasing Ce/Li concentrations, the lattice expands, and the emission peak is blueshifted. This correlation is explained in terms of the crystal field effect and the configurational coordinate diagram. This phosphor shows much higher thermal quenching temperature (225 °C) due to a weak electron-phonon interaction. Thus, it can be used as a sensitizer phosphor to excite other green or red phosphors, or a promising deep-blue phosphor for white-light-emitting diodes.  相似文献   

20.
A novel blue-emitting long-lasting phosphor Sr3Al10SiO20:Eu2+,Ho3+ is prepared by the conventional high-temperature solid-state technique and their luminescent properties are investigated. XRD, photoluminescence (PL) and thermoluminescence (TL) are used to characterize the synthesized phosphors. These phosphors are well crystallized by calcinations at 1500-1600 °C for 3 h. The phosphor emits blue light and shows long-lasting phosphorescence after it is excited with 254/365 nm ultraviolet light. TL curves reveal the introduction of Ho3+ ions into the Sr3Al10SiO20:Eu2+ host produces a highly dense trap level at appropriate depth, which is the origin of the long-lasting phosphorescence in this kind of material. The long-lasting phosphorescence lasts for nearly 6 h in the light perception of the dark-adapted human eye (0.32 mcd/m2). All the results indicate that this phosphor has promising potential practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号