首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnS nanoparticles with Mn2+ doping (0.5-20%) have been prepared through a simple chemical method, namely the chemical precipitation method. The structure of the nanoparticles has been analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV-vis spectrometer. The size of the particles is found to be 3-5 nm range. Photoluminescence spectra were recorded for undoped ZnS nanoparticles using an excitation wavelength of 320 nm, exhibiting an emission peak centered at around 445 nm. However, from the Mn2+-doped samples, a yellow-orange emission from the Mn2+4T1-6A1 transition is observed along with the blue emission. The prepared Mn2+-doped sample shows efficient emission of yellow-orange light with the peak emission 580 nm with the blue emission suppressed. The maximum PL intensity is observed only at the excitation energy of 3.88 eV (320 nm). Increase in stabilizing time up to 48 h in de-ionized water yields the enhancement of emission intensity of doped (4% Mn2+) ZnS. The correlation made through the concentration of Mn2+ versus PL intensity resulted in opposite trend (mirror image) of blue and yellow emissions.  相似文献   

2.
Cysteine stabilized ZnS and Mn2+-doped ZnS nanoparticles were synthesized by a wet chemical route. Using the ZnS:Mn2+ nanoparticles as seeds, silica-coated ZnS (ZnS@Si) and ZnS:Mn2+ (ZnS:Mn2+@Si) nanocomposites were formed in water by hydrolysis and condensation of tetramethoxyorthosilicate (TMOS). The influence of annealing in air, formier gas, and argon at 200-1000 °C on the chemical stability of ZnS@Si and ZnS:Mn2+@Si nanoparticles with and without silica shell was examined. Silica-coated nanoparticles showed an improved thermal stability over uncoated particles, which underwent a thermal combustion at 400 °C. The emission of the ZnS@Si and ZnS:Mn2+@Si passed through a minimum in photoluminescence intensity when annealed at 600 °C. Upon annealing at higher temperatures, ZnS@Si conserved the typical emission centered at 450 nm (blue). ZnS:Mn2+@Si yielded different high intensity emissions when heated to 800 °C depending on the gas employed. Emissions due to the Mn2+ at 530 nm (green; Zn2SiO4:Mn2+), 580 nm (orange; ZnS:Mn2+@Si), and 630 nm (red; ZnS:Mn2+@Si) were obtained. Therefore, with a single starting product a set of different colors was produced by adjusting the atmosphere wherein the powder is heated.  相似文献   

3.
In this work the preparation, characterization and photoluminescence studies of pure and copper-doped ZnS nanophosphors are reported, which are prepared by using solid-state reaction technique at a temperature of 100 °C. The as-obtained samples were characterized by X-ray diffraction (XRD) and UV-VIS Reflectance spectroscopy. The XRD analysis confirms the formation of cubic phase of undoped as well as Cu2+-doped ZnS nanoparticles. Furthermore it shows that the average size of pure as well as copper-doped samples ranges from 15 to 50 nm. The room-temperature PL spectra of the undoped ZnS sample showed two main peaks centered at around 421 and 450 nm, which are the characteristic emissions of interstitial zinc and sulfur vacancies, respectively. The PL of the doped sample showed a broad-band emission spectrum centered at 465 nm accompanied with shoulders at around 425, 450 and 510 nm, which are the characteristic emission peaks of interstitial zinc, sulfur vacancies and Cu2+ ions, respectively. Our experimental results indicate that the PL spectrum confirms the presence of Cu2+ ions in the ZnS nanoparticles as expected.  相似文献   

4.
ZnS:Cu+ and ZnS:Cu2+ nanocrystallites have been obtained by chemical precipitation from homogeneous solutions of zinc, copper salt compounds, with S2− as precipitating anion formed by decomposition of thioacetamide. X-ray diffraction (XRD) analysis shows that average diameter of particles is about 2.0-2.5 nm. The nanoparticles can be doped with copper during synthesis without altering XRD pattern. However, the emission spectrum of ZnS nanocrystallites doped with Cu+ and Cu2+ consists of two emission peaks. One is at 450 nm and the other is at 530 nm. The absorptive spectrum of the doped sample is different from that of un-doped ZnS nanoparticles. Because the emission process of the Cu+ luminescence center in ZnS nanocrystallites is remarkably different from that of the Cu2+ luminescence center, the emission spectra of Cu+-doped samples are different from those of Cu2+-doped samples.  相似文献   

5.
Monodispersed spherical ZnS particles as well as doped with Cu, Mn ions were synthesized from metal-chelate solutions of ethylenediamine tetraacetate (EDTA) and thioacetamide (TAA). The characterizations of the ZnS-based particles were investigated via TEM, SEM, XRD, TG/DTA and PL measurements. The sphere size was controlled from 50 nm to 1 μm by adjusting the nucleation temperatures and molar ratio of Zn-EDTA to TAA. The emission intensity continuously increased with the increase of the particle size. When the ZnS microspheres were annealed at 550-800 °C, there were two specific emission bands with the centers at 454 nm and 510 nm, which were associated with the trapped luminescence arising from the surface states and the stoichiometric vacancies, respectively. When Cu2+ was introduced into ZnS microspheres, the dominant emission was red-shifted from 454 to 508 nm, fluorescence intensity also sharply increased. However, for the Mn2+-doped ZnS, the emission intensity was significantly enhanced without the shift of emission site.  相似文献   

6.
In this work we synthesized ZnS:Mn2+ nanoparticles by chemical method using PVP (polyvinylpyrrolidone) as a capping agent in aqueous solution. The structure and optical properties of the resultant product were characterized using UV-vis optical spectroscopy, X-ray diffraction (XRD), photoluminescence (PL) and z-scan techniques. UV-vis spectra for all samples showed an excitonic peak at around 292 nm, indicating that concentration of Mn2+ ions does not alter the band gap of nanoparticles. XRD patterns showed that the ZnS:Mn2+ nanoparticles have zinc blende structure with the average crystalline sizes of about 2 nm. The room temperature photoluminescence (PL) spectrum of ZnS:Mn2+ exhibited an orange-red emission at 594 nm due to the 4T1-6A1 transition in Mn2+. The PL intensity increased with increase in the Mn2+ ion concentration. The second-order nonlinear optical properties of nanoparticles were studied using a continuous-wave (CW) He-Ne laser by z-scan technique. The nonlinear refractive indices of nanoparticles were in the order of 10−8 cm2/W with negative sign and the nonlinear absorption indices of these nanoparticles were obtained to be about 10−3 cm/W with positive sign.  相似文献   

7.
ZnS and SiO2-ZnS nanophosphors, with or without different concentration of Mn2+ activator ions, were synthesized by using a sol-gel method. Dried gels were annealed at 600 °C for 2 h. Structure, morphology and particle sizes of the samples were determined by using X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). The diffraction peaks associated with the zincblende and the wurtzite structures of ZnS were detected from as prepared ZnS powders and additional diffraction peaks associated with ZnO were detected from the annealed powders. The particle sizes of the ZnS powders were shown to increase from 3 to 50 nm when the powders were annealed at 600 °C. An UV-Vis spectrophotometer and a 325 nm He-Cd laser were used to investigate luminescent properties of the samples in air at room temperature. The bandgap of ZnS nanoparticles estimated from the UV-Vis data was 4.1 eV. Enhanced orange photoluminescence (PL) associated with 4T16A1 transitions of Mn2+ was observed from as prepared ZnS:Mn2+and SiO2-ZnS:Mn2+ powders at 600 nm when the concentration of Mn2+ was varied from 2-20 mol%. This emission was suppressed when the powders were annealed at 600 °C resulting in two emission peaks at 450 and 560 nm, which can be ascribed to defects emission in SiO2 and ZnO respectively. The mechanism of light emission from Mn2+, the effect of varying the concentration on the PL intensity, and the effect of annealing are discussed.  相似文献   

8.
CdS:Mn2+/ZnS and CdS:Mn2+/CdS core–shell nanoparticles were synthesized in aqueous medium via chemical precipitation method in an ambient atmosphere. Polyvinylpyrrolidone (PVP) was used as a capping agent. The effect of the shell (ZnS and CdS) thickness on CdS:Mn2+ nanoparticles was investigated. Inorganically passivated core/shell nanocrystals having a core (CdS:Mn2+) diameter of 4 nm and a ZnS-shell thickness of ∼0.5 nm exhibited improved PL intensity. Optimum concentration of doping ions (Mn2+) was selected through optical study. For all the core–shell samples two emission peaks were observed, the first one is band edge emission in the lower wavelength side due to energy transfer to the Mn2+ ions in the crystal lattice; the second emission is characteristic peak of Mn2+ ions (4T1 → 6A1). The XRD, TEM and PL results showed that the synthesized core–shell particles were of high quality and monodisperse.  相似文献   

9.
The water-soluble Mn2+-doped ZnS quantum dots (Mn:ZnS d-dots) were synthesized by using thioglycolic acid (TGA) as stabilizer in aqueous solutions in air, and characterized by X-ray powder diffraction (XRD), UV-vis absorption spectra and photoluminescence (PL) emission spectroscopy. The sizes of Mn:ZnS d-dots were determined to be about 2 nm using XRD measurements and the UV-vis absorption spectra. It was found that the Mn2+4T1 → 6A1 emission intensity of Mn:ZnS d-dots significantly increased with the increase of Mn2+ concentration, and showed a maximum when Mn2+ doping content was 1.5%. If Mn2+ concentration continued to increase, namely more than 1.5%, the Mn2+4T1 → 6A1 emission intensity would decrease. In addition, the effects of TGA/(Zn + Mn) molar ratio on PL were investigated. It was found that the peak intensity ratio of Mn2+4T1 → 6A1 emission to defect-states emission showed a maximum when the TGA/(Zn + Mn) molar ratio was equal to 1.8.  相似文献   

10.
Temperature dependent luminescence and luminescence lifetime measurements are reported for nanocrystalline ZnS:Cu2+ particles. Based on the variation of the emission wavelength as a function of particle size (between 3.1 and 7.4 nm) and the low quenching temperature (Tq=135 K), the green emission band is assigned to recombination of an electron in a shallow trap and Cu2+. The reduction in lifetime of the green emission (from 20 μs at 4 K to 0.5 μs at 300 K) follows the temperature quenching of the emission. In addition to the green luminescence, a red emission band, previously only reported for bulk ZnS:Cu2+, is observed. The red emission is assigned to recombination of a deeply trapped electron and Cu2+. The lifetime of the red emission is longer (about 40 μs at 4 K) and the quenching temperature is higher.  相似文献   

11.
Zinc sulfide semiconductor nanocrystals doped Mn2+ have been synthesized via a solution-based method utilizing optimum dopant concentration (4%) and employing polyvinyl pyrrolidone (PVP) and sodium hexametapolyphosphate (SHMP) as capping agents. UV-vis absorbance spectra for all of the synthesized nanocrystals show an exitonic peak at around 310 nm. The particle size and morphology were characterized by scanning electron microscopy (SEM), FT-IR, X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence spectrum (PL). Diffraction data confirmed that the crystallite size is around 3-5 nm. Room temperature photoluminescence (PL) spectrum for the bare ZnS sample shows a strong band at ∼445 nm. The uncapped and capped(SHMP, PVP) ZnS:Mn2+ samples show a strong and broad band in the ∼580-585 nm range.  相似文献   

12.
Synthesis and photoluminescence characteristics of doped ZnS nanoparticles   总被引:3,自引:0,他引:3  
Free-standing powders of doped ZnS nanoparticles have been synthesized by using a chemical co-precipitation of Zn2+, Mn2+, Cu2+ and Cd2+ with sulfur ions in aqueous solution. X-ray diffraction analysis shows that the diameter of the particles is ∼2–3 nm. The unique luminescence properties, such as the strength (its intensity is about 12 times that of ZnS nanoparticles) and stability of the visible-light emission, were observed from ZnS nanoparticles co-doped with Cu2+ and Mn2+. The nanoparticles could be doped with copper and manganese during the synthesis without altering the X-ray diffraction pattern. However, doping shifts the luminescence to 520–540 nm in the case of co-doping with Cu2+ and Mn2+. Doping also results in a blue shift on the excitation wavelength. In Cd2+-doped ZnS nanometer-scale particles, the fluorescence spectra show a red shift in the emission wavelength (ranging from 450 nm to 620 nm). Also a relatively broad emission (ranging from blue to yellow) has been observed. The results strongly suggest that doped ZnS nanocrystals, especially two kinds of transition metal-activated ZnS nanoparticles, form a new class of luminescent materials. Received: 16 October 2000 / Accepted: 17 October 2000 / Published online: 23 May 2001  相似文献   

13.
Mn2+­doped ZnS nanoparticles have been prepared through the reverse micelles method using sodium bis (2-ethylhexyl) sulfosuccinate (AOT) as a surfactant. The prepared particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red spectrometer (FT-IR), UV-vis spectrometry, photoluminescence (PL), electron spin resonance (ESR) and thermogravimetry-differential scanning calorimetry (TG-DSC).  相似文献   

14.
The presence of surfactants polyethylene glycol (PEG), polyvinyl pyrrolidone (PVP), sodium hexameta polyphosphate (SHMP) and tri-octyl phosphine oxide (TOPO) on the surface of Ni2+ doped ZnS (ZnS:Ni2+) nanoparticles resulted variation in their optical properties. The optical properties of each surfactant-capped ZnS:Ni2+ nanoparticles were investigated using UV–visible (UV–Vis) absorption and photoluminescence (PL) techniques. The absorption spectra and fluorescent emission spectra showed a significant blue shift compared to that of the bulk zinc sulfide. The effect of the optical properties in colloidal form (wet) and dry samples were investigated. Enhanced PL emission was observed for the dry samples at 80 °C. Thermal properties of the ZnS:Ni2+ was also studied using thermo gravimetric-differential thermal analysis (TG-DTA), Fourier transform infra-red spectrometer (FT-IR) and X-ray diffraction (XRD). The results are presented and discussed.  相似文献   

15.
In the present study, we report the photoluminescence (PL) study of nanoparticles of ZnS implanted with Cu+ ions at the doses of 5×1014, 1×1015 and 5×1015 ions/cm2 and annealed at 200 and 300 °C. The photoluminescence spectra of the samples implanted at lower doses of 5×1014 and 1×1015 ions/cm2 and annealed at 200 and 300 °C showed peaks at around 406, 418 and 485 nm. The PL emission peak at 485 nm was attributed to the transition of electrons from conduction band of ZnS to the impurity level formed by the implanted Cu+ ions. In the PL spectrum of the sample implanted at the highest dose of 5×1015 ions/cm2, in addition to the emission peaks observed in the PL spectra of the samples implanted at lower doses, a peak at around 525 nm, the intensity of which decreased with increase in the annealing temperature, was observed. The emission peak at 525 nm was attributed to the transitions between sulfur and zinc vacancy levels. The full width at half maximum (FWHM) of the emission peak at 406 nm was observed to decrease with increase in annealing temperature, indicating lattice reconstruction. The observation of copper ion impurity related peak at 485 nm in the PL spectra of samples of the present study indicated that the doping of copper ions into the ZnS lattice is achievable by implanting Cu+ ions followed by annealing.  相似文献   

16.
A natural self-assembly process of semiconductor nanoparticles leading to the formation of doped, monocrystalline nanorods with highly enhanced dopant-related luminescence properties is reported. ∼4 nm sized, polycrystalline ZnS nanoparticles of zinc-blende (cubic) structure, doped with Cu+-Al3+ or Mn2+ have been aggregated in the aqueous solution and grown into nanorods of length ∼400 nm and aspect ratio ∼12. Transmission electron microscopic (TEM) images indicate crystal growth mechanisms involving both Ostwald-ripening and particle-to-particle oriented-attachment. Sulphur-sulphur catenation is proposed for the covalent-linkage between the attached particles. The nanorods exhibit self-assembly mediated quenching of the lattice defect-related emission accompanied by multifold enhancement in the dopant-related emission. This study demonstrates that the collective behavior of an ensemble of bare nanoparticles, under natural conditions, can lead to the formation of functionalized (doped) nanorods with enhanced luminescence properties.  相似文献   

17.
The Sm3+-doped CaWO4 nanoparticles were synthesized by hydrothermal method. The room temperature photoluminescence (PL) spectra of Sm3+-doped CaWO4 nanoparticles doped with different Sm3+ concentrations under 405 nm excitation have been investigated. The PL spectra showed four strong emission peaks at 460, 571, 609, and 653 nm. The first emission peak at 460 nm could be due to a structural defect of the lattice, an oxygen-deficient WO3 complex. The other three emissions at 571, 609, and 653 nm were due to the f-f forbidden transitions of the 4f electrons of Sm3+, corresponding to 4G5/26H5/2 (571 nm), 6H7/2 (609 nm), and 6H9/2 (653 nm), respectively. In addition, the optimum Sm3+ concentration in CaWO4 nanoparticles for optical emission was determined to be 1.0%. The Sm3+4G5/26H7/2 (609 nm) emission intensity of Sm3+-doped CaWO4 nanoparticles significantly increased with the increase of Sm3+ concentration, and showed a maximum when Sm3+ doping content was 1.0%. If Sm3+ concentration continued to increase, namely more than 1.0%, the Sm3+4G5/26H7/2 emission intensity would decrease. The present materials might be a promising phosphor for white-light LED applications.  相似文献   

18.
Spherical SiO2 particles have been coated with Zn2SiO4:Eu3+ phosphor layers by a Pechini sol-gel process. The microstructure and luminescent properties of the obtained Zn2SiO4:Eu3+@SiO2 particles were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, and lifetime. The results demonstrate that the Zn2SiO4:Eu3+@SiO2 particles, which have regular and uniform spherical morphology, emitted an intensive red light emission at 613 nm under excitation at 395 nm. Besides, the effects of the Eu3+ concentration, annealing temperature and charge compensators of Li+ ions on the PL emission intensities were investigated in detail.  相似文献   

19.
Mn-doped ZnS sea urchin-like architectures were fabricated by a one-pot solvothermal route in a ternary solution made of ethylenediamine, ethanolamine and distilled water. The as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was demonstrated that the as-prepared sea urchin-like architectures with diameter of 0.5-1.5 μm were composed of nanorods, possessing a wurtzite structures. The preferred growth orientation of nanorods was found to be the [0 0 2] direction. The PL spectra of the Mn-doped ZnS sea urchin-like architectures show a strong orange emission at 587 nm, indicating the successful doping of Mn2+ ions into ZnS host. Ethanolamine played the role of oriented-assembly agent in the formation of sea urchin-like architectures. A possible growth mechanism was proposed to explain the formation of sea urchin-like architectures.  相似文献   

20.
The synthesis of Cu doped ZnS nanoparticles inside the pore of an inorganic silica gel matrix is presented. The synthesized nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). X-ray diffraction pattern reveals the crystalline wurtzite phase of ZnS. The existence of silica gel in modeling morphologies of the nanoparticles was characterized using Fourier transform infrared (FTIR) spectrometer. Thickness of the silica shell was also calculated. UV- absorption spectrum shows the appearance of an absorption peak at 273 nm which confirms the blue shift as compared to that of bulk ZnS. The photoluminescence (PL) emission spectrum of the sample showed a broad band in the range 465-510 nm due to the transition from the conduction band edge of ZnS nanocrystals to the acceptor like t2 state of Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号