首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The temperature dependence of the luminescence properties of nanocrystalline CdS/Mn2+ particles is investigated. In addition to an orange Mn2+ emission around 585 nm a red defect related emission around 700 nm is observed. The temperature quenching of both emissions is similar (Tq≈100 K). For the defect emission the reduction in the lifetime follows the temperature dependence of the intensity. For the Mn2+ emission however, the intensity decreases more rapidly than the lifetime with increasing temperature. To explain these observations a model is proposed in which the Mn2+ ions are excited via an intermediate state involving shallowly trapped (≈40 meV) charge carriers.  相似文献   

2.
ZnS:Cu+ and ZnS:Cu2+ nanocrystallites have been obtained by chemical precipitation from homogeneous solutions of zinc, copper salt compounds, with S2− as precipitating anion formed by decomposition of thioacetamide. X-ray diffraction (XRD) analysis shows that average diameter of particles is about 2.0-2.5 nm. The nanoparticles can be doped with copper during synthesis without altering XRD pattern. However, the emission spectrum of ZnS nanocrystallites doped with Cu+ and Cu2+ consists of two emission peaks. One is at 450 nm and the other is at 530 nm. The absorptive spectrum of the doped sample is different from that of un-doped ZnS nanoparticles. Because the emission process of the Cu+ luminescence center in ZnS nanocrystallites is remarkably different from that of the Cu2+ luminescence center, the emission spectra of Cu+-doped samples are different from those of Cu2+-doped samples.  相似文献   

3.
Monodispersed spherical ZnS particles as well as doped with Cu, Mn ions were synthesized from metal-chelate solutions of ethylenediamine tetraacetate (EDTA) and thioacetamide (TAA). The characterizations of the ZnS-based particles were investigated via TEM, SEM, XRD, TG/DTA and PL measurements. The sphere size was controlled from 50 nm to 1 μm by adjusting the nucleation temperatures and molar ratio of Zn-EDTA to TAA. The emission intensity continuously increased with the increase of the particle size. When the ZnS microspheres were annealed at 550-800 °C, there were two specific emission bands with the centers at 454 nm and 510 nm, which were associated with the trapped luminescence arising from the surface states and the stoichiometric vacancies, respectively. When Cu2+ was introduced into ZnS microspheres, the dominant emission was red-shifted from 454 to 508 nm, fluorescence intensity also sharply increased. However, for the Mn2+-doped ZnS, the emission intensity was significantly enhanced without the shift of emission site.  相似文献   

4.
Radioluminescence and thermally stimulated luminescence measurements on Lu2O3, Lu2SiO5 (LSO) and Lu2SiO5:Ce3+ (LSO:Ce) reveal the presence of intrinsic ultraviolet luminescence bands. Characteristic emission with maximum at 256 nm occurs in each specimen and is attributed to radiative recombination of self-trapped excitons. Thermal quenching of this band obeys the Mott-Seitz relation yielding quenching energies 24, 38 and 13 meV for Lu2O3, LSO and LSO:Ce, respectively. A second intrinsic band appears at 315 nm in LSO and LSO:Ce, and at 368 nm in Lu2O3. Quenching curves for these bands show an initial increase in peak intensity followed by a decrease. Similarity in spectral peak position and quenching behavior indicate that this band has a common origin in each of the samples and is attributed to radiative recombination of self-trapped holes, in agreement with previous work on similar specimens. Comparison of glow curves and emission spectra show that the lowest temperature glow peaks in each specimen are associated with thermal decay of self-trapped excitons and self-trapped holes. Interplay between the intrinsic defects and extrinsic Ce3+ emission in LSO:Ce is strongly indicated.  相似文献   

5.
Temperature-dependent spectral properties in the cubic Y2O3:Tb3+ nanocrystals (NCs, 10-70 nm) under 488 nm excitation were studied and compared to that in the bulk. In NCs, emission lines assigned to the 5D4-7FJ (J=1-6) transitions of Tb3+ ions and a broad band originated from oxygen defects were observed. As a function of temperature, two intensity maximums of the 5D47FJ transitions appeared in the NCs, at ∼250 and ∼500 K, while in the bulk only one maximum appeared at ∼250 K. The relative intensity of the maximum at ∼500 K to that at ∼250 K increased with decreasing particle size. The intensity maximum of the band emissions that came from the oxygen defects appeared in the range of 500-600 K. The appearance of intensity maximum as a function of temperature was attributed to the rivalry between thermal quenching process and phonon-assisted excitation. The appearance of two maxima in the NCs was attributed to the luminescence contributed by different Tb3+ centers, the internal and the surface. The emission for the surface Eu3+ centers has higher quenching temperature in contrast to that for the internal centers.  相似文献   

6.
The optical properties of SrSi2O2N2 doped with divalent Eu2+ and Yb2+ are investigated. The Eu2+ doped material shows efficient green emission peaking at around 540 nm that is consistent with 4f7→4f65d transitions of Eu2+. Due to the high quantum yield (90%) and high quenching temperature (>500 K) of luminescence, SrSi2O2N2:Eu2+ is a promising material for application in phosphor conversion LEDs. The Yb2+ luminescence is markedly different from Eu2+ and is characterized by a larger Stokes shift and a lower quenching temperature. The anomalous luminescence properties are ascribed to impurity trapped exciton emission. Based on temperature and time dependent luminescence measurements, a schematic energy level diagram is derived for both Eu2+ and Yb2+ relative to the valence and conduction bands of the oxonitridosilicate host material.  相似文献   

7.
A natural self-assembly process of semiconductor nanoparticles leading to the formation of doped, monocrystalline nanorods with highly enhanced dopant-related luminescence properties is reported. ∼4 nm sized, polycrystalline ZnS nanoparticles of zinc-blende (cubic) structure, doped with Cu+-Al3+ or Mn2+ have been aggregated in the aqueous solution and grown into nanorods of length ∼400 nm and aspect ratio ∼12. Transmission electron microscopic (TEM) images indicate crystal growth mechanisms involving both Ostwald-ripening and particle-to-particle oriented-attachment. Sulphur-sulphur catenation is proposed for the covalent-linkage between the attached particles. The nanorods exhibit self-assembly mediated quenching of the lattice defect-related emission accompanied by multifold enhancement in the dopant-related emission. This study demonstrates that the collective behavior of an ensemble of bare nanoparticles, under natural conditions, can lead to the formation of functionalized (doped) nanorods with enhanced luminescence properties.  相似文献   

8.
Characteristics of two green emission bands, G(I) and G(II), and their origin were investigated within 0.4-300 K under photoexcitation in the 3.4-6.0 eV energy range for undoped and Mo6+-, Mo6+ , Y3+-, Mo6+, Nb5+-, Mo6+, Ce3+-, Cr6+-, La3+-, Ba2+- and Cd2+-doped PbWO4 crystals with different concentrations of impurity and intrinsic defects, grown by different methods and annealed at different conditions. The G(I) emission band, observed at low temperatures, located around 2.3-2.4 eV and excited around 3.9 eV, is usually a superposition of many closely positioned bands. The G(I) emission of undoped crystals is assumed to arise from the WO42− groups located in the crystal regions of lead-deficient structure. In Mo6+-doped crystals, this emission arises mainly from the MoO42− groups themselves. The G(II) emission band located at 2.5 eV is observed only in the crystals, containing the isolated oxygen vacancies — WO3 groups. This emission appears at T>160 K under excitation around 4.07 eV as a result of the photo-thermally stimulated disintegration of localized exciton states and subsequent recombination of the produced electron and hole centres near WO3 groups. The G(II) emission accompanies also thermally stimulated recombination processes in PbWO4 crystals above 150 K. Mainly the G(II) emission is responsible for the slow decay of the green luminescence in PbWO4 crystals.  相似文献   

9.
This work investigates the origin of novel visible photoluminescence (PL) bands observed in the spinel MgAl2O4:Co2+. Besides the well-known fourfold-coordinated Co2+(Td) PL at 670 nm [N.V. Kuleshov, V.P. Mikhailov, V.G. Scherbitsky, P.V. Prokoshin and K.V. Yumashev, J. Lumin. 55 (1993) 265.], a rich structured PL band at 686 nm was also observed that we associate with uncontrolled impurities of sixfold coordinated Cr3+(Oh) by time-resolved spectroscopy and lifetime measurements and their variation with temperature. We also show that the lifetime of the Co2+(Td) emission at 670 nm varies from τ=6.7 μs to 780 ns on passing from T=10 to 290 K. This unexpected behaviour for Td systems is related to the excited-state crossover (4T12E), making the emission band to transform from a narrow-like emission from 2E at low temperature to a broad structureless band from 4T1 at room temperature.  相似文献   

10.
Detailed spectroscopic studies of the triply doped KGd(WO4)2:Ho3+/Yb3+/Tm3+ single crystals (which exhibit multicolor up-conversion fluorescence) are reported for the first time. The absorption spectra of crystals were measured at 10 and 300 K; the room temperature luminescence spectra were excited at 980 nm wavelength. The dependence of the intensity of luminescence on the excitation power for three different concentration of Ho3+, Yb3+ and Tm3+ ions was investigated. Efficient green and red up-converted luminescence of Ho3+ ions and weak blue up-conversion luminescence of Tm3+ ions were observed in spectra. The red emission of Ho3+ ions is more intensive than their green emission. Dependence of the up-conversion luminescence intensity on the excitation power and impurities concentration was also studied; the number of phonon needed for efficient up-conversion was determined for each case. All possible energy transfer processes between different pairs of the impurity ions' energy levels are also discussed.  相似文献   

11.
In this work the preparation, characterization and photoluminescence studies of pure and copper-doped ZnS nanophosphors are reported, which are prepared by using solid-state reaction technique at a temperature of 100 °C. The as-obtained samples were characterized by X-ray diffraction (XRD) and UV-VIS Reflectance spectroscopy. The XRD analysis confirms the formation of cubic phase of undoped as well as Cu2+-doped ZnS nanoparticles. Furthermore it shows that the average size of pure as well as copper-doped samples ranges from 15 to 50 nm. The room-temperature PL spectra of the undoped ZnS sample showed two main peaks centered at around 421 and 450 nm, which are the characteristic emissions of interstitial zinc and sulfur vacancies, respectively. The PL of the doped sample showed a broad-band emission spectrum centered at 465 nm accompanied with shoulders at around 425, 450 and 510 nm, which are the characteristic emission peaks of interstitial zinc, sulfur vacancies and Cu2+ ions, respectively. Our experimental results indicate that the PL spectrum confirms the presence of Cu2+ ions in the ZnS nanoparticles as expected.  相似文献   

12.
In this report the optical properties and energy-transfer frequency upconversion luminescence of Er3+/Yb3+-codoped laponite-derived powders under 975 nm infrared excitation is investigated. The 75%(laponite):25%(PbF2) samples doped with erbium and ytterbium ions, generated high intensity red emission around 660 nm and lower intensity green emission around 525, and 545 nm. The observed emission signals were examined as a function of the excitation power and annealing temperature. The results indicate that energy-transfer, and excited-state absorption are the major upconversion excitation mechanism for the erbium excited-state red emitting level. The precursor glass samples were also heat treated at annealing temperatures of 300 °C, 400 °C, 500 °C, and 600 °C, for a 2 h period. The dependence of the visible upconversion luminescence emission upon the annealing temperature indicated the existence of an optimum temperature which leads to the generation of the most intense and spectrally pure red emission signal.  相似文献   

13.
The energy transfer processes in Lu2SiO5:Ce3+ luminescence was investigated through the temperature dependent luminescence under excitation with VUV-UV. Ce1 center emission peaking at 393 and 422 nm and Ce2 center emission peaking at 462 nm were observed. Ce2 center emission is enhanced with the temperature, which can be explained by the rate of energy transfer from Ce1 center increases when the temperature rises. The Ce1 emission shows the thermal quenching effect under the direct excitation of Ce3+ at 262 nm. However, under the interband excitation of 183 nm, the Ce1 center emission exhibits undulating temperature dependence. This is because the emission is governed by thermal quenching and possible thermal enhancement of the transport of free carriers with the rising temperature.  相似文献   

14.
The excitation and emission spectra of octahedrally coordinated europium ion (Eu2+) ions in Cs2M2+P2O7 (M2+=Ca, Sr) are reported and discussed. The remarkable features of the Eu2+ luminescence in these phosphate materials include (a) very large Stokes shift of emission (∼1 eV), (b) high luminescence quenching temperature, and (c) unusually low energy of the emitted photons for Eu2+ luminescence in phosphate-based materials. The broad emission bands of Eu2+ in Cs2CaP2O7 and Cs2SrP2O7 peak at 607 and 563 nm, respectively. The Stokes shift, crystal field splitting, centroid shift and the red shift of the Eu2+ 4f65d1 electronic configuration have been estimated from the relevant optical data. The radiative lifetime of the Eu2+ emission in Cs2M2+P2O7 is ∼1.2 μs. The nature of the Eu2+ emission in Cs2M2+P2O7 is discussed and arguments are presented to associate the luminescence with an extreme case of normal 4f65d1→4f7[8S7/2] emission.  相似文献   

15.
In the present work, wurtzite ZnS hierarchical microsphere nanostructures composed of nanowires were synthesized through hydrothermal method. The morphologies and microstructures of the as obtained wurtzite ZnS sample were investigated by scanning electron microscopy and transmission electron microscopy. The results show that the diameter of the nanowires is about 10 nm, the length is about 500 nm, growing along the [0 0 1] direction. UV–visible spectroscopy shows that the band gap of the as obtained ZnS hierarchical microspheres is 3.4 eV. Room temperature photoluminescence measurements reveals a strong green emission peak at around 516 nm. The N2 adsorption–desorption isotherms experiment at 77 K exhibits that the surface area of the ZnS sample is 99.87 m2 g−1.  相似文献   

16.
The emission spectra and the lifetime of the lasing transition 4I13/24I15/2 in Er3+-doped TeO2-ZnO binary glass have been studied. The investigation includes Raman scattering spectroscopy as well as optical absorption, luminescence, and lifetime measurements techniques. The influence of erbium concentration on the line-shape of this electron transition has been analyzed. It was observed that the increasing of Er3+ ion concentration, in the 0.2-4 mol% range, results in a structural changes and a significant spectral broadening of the 1.53 μm emission band. Reabsorption has been evoked to explain the broadening of the 4I13/24I15/2 emission line. In the paper, is also reported the effect of the erbium content on the emission intensity of the 4I13/24I15/2 transition as well as on the lifetime of the 4I13/2 level. Based on the electrical-dipole interaction theory, the luminescence concentration quenching mechanism by hydroxyl groups is analyzed. The data suggest that <10% of hydroxyl groups are coupled to erbium ions in the zinc tellurite glass network.  相似文献   

17.
Cysteine stabilized ZnS and Mn2+-doped ZnS nanoparticles were synthesized by a wet chemical route. Using the ZnS:Mn2+ nanoparticles as seeds, silica-coated ZnS (ZnS@Si) and ZnS:Mn2+ (ZnS:Mn2+@Si) nanocomposites were formed in water by hydrolysis and condensation of tetramethoxyorthosilicate (TMOS). The influence of annealing in air, formier gas, and argon at 200-1000 °C on the chemical stability of ZnS@Si and ZnS:Mn2+@Si nanoparticles with and without silica shell was examined. Silica-coated nanoparticles showed an improved thermal stability over uncoated particles, which underwent a thermal combustion at 400 °C. The emission of the ZnS@Si and ZnS:Mn2+@Si passed through a minimum in photoluminescence intensity when annealed at 600 °C. Upon annealing at higher temperatures, ZnS@Si conserved the typical emission centered at 450 nm (blue). ZnS:Mn2+@Si yielded different high intensity emissions when heated to 800 °C depending on the gas employed. Emissions due to the Mn2+ at 530 nm (green; Zn2SiO4:Mn2+), 580 nm (orange; ZnS:Mn2+@Si), and 630 nm (red; ZnS:Mn2+@Si) were obtained. Therefore, with a single starting product a set of different colors was produced by adjusting the atmosphere wherein the powder is heated.  相似文献   

18.
The nanocrystalline Gd2O3:Eu3+ powders with cubic phase were prepared by a combustion method in the presence of urea and glycol. The effects of the annealing temperature on the crystallization and luminescence properties were studied. The results of XRD show pure phase can be obtained, the average crystallite size could be calculated as 7, 8, 15, and 23 nm for the precursor and samples annealed at 600, 700 and 800 °C, respectively, which coincided with the results from TEM images. The emission intensity, host absorption and charge transfer band intensity increased with increasing the temperature. The slightly broad emission peak at 610 nm for smaller particles can be observed. The ratio of host absorption to O2−-Eu3+ charge transfer band of smaller nanoparticles is much stronger compared with that for larger nanoparticles, furthermore, the luminescence lifetimes of nanoparticles increased with increasing particles size. The effects of doping concentration of Eu3+ on luminescence lifetimes and intensities were also discussed. The samples exhibited a higher quenching concentration of Eu3+, and luminescence lifetimes of nanoparticles are related to annealing temperature of samples and the doping concentration of Eu3+ ions.  相似文献   

19.
Ho3+/Tm3+/Yb3+ tri-doped glass ceramics with white light emitting have been developed and demonstrated. Pumped by 980 nm laser diode (LD), intensive red, green and blue up-conversions (UC) were obtained. The green emission is assigned to Ho3+ ion and the blue emission is assigned to Tm3+ ion, whereas the red emission is the combination contribution of the Ho3+ and Tm3+ ions. The RGB intensities could be adjusted by tuning the rare-earth ion concentration and pump power intensity. Thus, multicolor of the luminescence, including perfect white light with CIE-X=0.329 and CIE-Y=0.342 in the 1931 CIE chromaticity diagram can be obtained in 0.15 Ho3+/0.2Tm3+/3Yb3+ tri-doped glass ceramics embedding BaF2 nanocrystals pumped by a single infrared laser diode source of 980 nm at 500 mW. The up-conversion luminescence mechanism of Yb3+ sensitize Ho3+ and Tm3+ ions and the energy transfer from Ho3+ to Tm3+ in oxy-fluoride silicate glass ceramics were analyzed.  相似文献   

20.
Synthesis and photoluminescence characteristics of doped ZnS nanoparticles   总被引:3,自引:0,他引:3  
Free-standing powders of doped ZnS nanoparticles have been synthesized by using a chemical co-precipitation of Zn2+, Mn2+, Cu2+ and Cd2+ with sulfur ions in aqueous solution. X-ray diffraction analysis shows that the diameter of the particles is ∼2–3 nm. The unique luminescence properties, such as the strength (its intensity is about 12 times that of ZnS nanoparticles) and stability of the visible-light emission, were observed from ZnS nanoparticles co-doped with Cu2+ and Mn2+. The nanoparticles could be doped with copper and manganese during the synthesis without altering the X-ray diffraction pattern. However, doping shifts the luminescence to 520–540 nm in the case of co-doping with Cu2+ and Mn2+. Doping also results in a blue shift on the excitation wavelength. In Cd2+-doped ZnS nanometer-scale particles, the fluorescence spectra show a red shift in the emission wavelength (ranging from 450 nm to 620 nm). Also a relatively broad emission (ranging from blue to yellow) has been observed. The results strongly suggest that doped ZnS nanocrystals, especially two kinds of transition metal-activated ZnS nanoparticles, form a new class of luminescent materials. Received: 16 October 2000 / Accepted: 17 October 2000 / Published online: 23 May 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号