首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ZnS:Cu+ and ZnS:Cu2+ nanocrystallites have been obtained by chemical precipitation from homogeneous solutions of zinc, copper salt compounds, with S2− as precipitating anion formed by decomposition of thioacetamide. X-ray diffraction (XRD) analysis shows that average diameter of particles is about 2.0-2.5 nm. The nanoparticles can be doped with copper during synthesis without altering XRD pattern. However, the emission spectrum of ZnS nanocrystallites doped with Cu+ and Cu2+ consists of two emission peaks. One is at 450 nm and the other is at 530 nm. The absorptive spectrum of the doped sample is different from that of un-doped ZnS nanoparticles. Because the emission process of the Cu+ luminescence center in ZnS nanocrystallites is remarkably different from that of the Cu2+ luminescence center, the emission spectra of Cu+-doped samples are different from those of Cu2+-doped samples.  相似文献   

2.
ZnS nanoparticles with Mn2+ doping (0.5-20%) have been prepared through a simple chemical method, namely the chemical precipitation method. The structure of the nanoparticles has been analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV-vis spectrometer. The size of the particles is found to be 3-5 nm range. Photoluminescence spectra were recorded for undoped ZnS nanoparticles using an excitation wavelength of 320 nm, exhibiting an emission peak centered at around 445 nm. However, from the Mn2+-doped samples, a yellow-orange emission from the Mn2+4T1-6A1 transition is observed along with the blue emission. The prepared Mn2+-doped sample shows efficient emission of yellow-orange light with the peak emission 580 nm with the blue emission suppressed. The maximum PL intensity is observed only at the excitation energy of 3.88 eV (320 nm). Increase in stabilizing time up to 48 h in de-ionized water yields the enhancement of emission intensity of doped (4% Mn2+) ZnS. The correlation made through the concentration of Mn2+ versus PL intensity resulted in opposite trend (mirror image) of blue and yellow emissions.  相似文献   

3.
Direct synthesis of ZnS nanocrystallites doped with Ti3+ or Ti4+ by precipitation has led to novel photoluminescence properties. Detailed X-ray diffraction (XRD), fluorescence spectrophotometry, UV–vis spectrophotometry and X-ray photoelectron spectroscopy (XPS) analysis reveal the crystal lattice structure, average size, emission spectra, absorption spectra and composition. The average crystallite size doped with different mole ratios, estimated from the Debye–Scherrer formula, is about 2.6±0.2 nm. The nanoparticles can be doped with Ti3+ and Ti4+ during the synthesis without the X-ray diffraction pattern being altered. The strong and stable visible-light emission has been observed from ZnS nanocrystallites doped with Ti3+ (its maximum fluorescence intensity is about twice that of undoped ZnS nanoparticles). However, the fluorescence intensity of the ZnS nanocrystallites doped with Ti4+ is almost the same as that of the undoped ZnS nanoparticles. The emission peak of the undoped sample is at 440–450 nm. The emission spectrum of the doped sample consists of two emission peaks, one at 420–430 nm and the other at 510 nm. Received: 27 April 2001 / Accepted: 16 August 2001 / Published online: 17 October 2001  相似文献   

4.
ZnS nanocrystallites co-doped with Cu2+ and Cd2+ have been prepared by precipitation from homogeneous solutions of transition metal (Zn2+, Cu2+ and Cd2+) salt compounds, with S2− as precipitating anion formed by decomposition of thioacetamide (TAA). X-ray diffraction (XRD) patterns of the samples show that the average crystallite size of the doped and undoped ZnS nanocrystallites is Novel luminescence phenomena (green emission) have been observed from the co-doped ZnS nanocrystals. The photoluminescence (PL) property of the co-doped samples is significantly different from that of ZnS nanocrystallites doped with Cu2+ or Cd2+.  相似文献   

5.
A natural self-assembly process of semiconductor nanoparticles leading to the formation of doped, monocrystalline nanorods with highly enhanced dopant-related luminescence properties is reported. ∼4 nm sized, polycrystalline ZnS nanoparticles of zinc-blende (cubic) structure, doped with Cu+-Al3+ or Mn2+ have been aggregated in the aqueous solution and grown into nanorods of length ∼400 nm and aspect ratio ∼12. Transmission electron microscopic (TEM) images indicate crystal growth mechanisms involving both Ostwald-ripening and particle-to-particle oriented-attachment. Sulphur-sulphur catenation is proposed for the covalent-linkage between the attached particles. The nanorods exhibit self-assembly mediated quenching of the lattice defect-related emission accompanied by multifold enhancement in the dopant-related emission. This study demonstrates that the collective behavior of an ensemble of bare nanoparticles, under natural conditions, can lead to the formation of functionalized (doped) nanorods with enhanced luminescence properties.  相似文献   

6.
Strong green luminescence of Ni2+-doped ZnS nanocrystals   总被引:1,自引:0,他引:1  
ZnS nanoparticles doped with Ni2+ have been obtained by chemical co-precipitation from homogeneous solutions of zinc and nickel salt compounds, with S2- as precipitating anion, formed by decomposition of thioacetamide (TAA). The average size of particles doped with different mole ratios, estimated from the Debye–Scherrer formula, is about 2–2.5 nm. The nanoparticles could be doped with nickel during synthesis without altering the X-ray diffraction pattern. A Hitachi M-850 fluorescence spectrophotometer reveals the emission spectra of samples. The absorption spectra show that the excitation spectra of Ni-doped ZnS nanocrystallites are almost the same as those of pure ZnS nanocrystallites (λex=308–310 nm). Because a Ni2+ luminescent center is formed in ZnS nanocrystallites, the photoluminescence intensity increases with the amount of ZnS nanoparticles doped with Ni2+. Stronger and stable green-light emission (520 nm) (its intensity is about two times that of pure ZnS nanoparticles) has been observed from ZnS nanoparticles doped with Ni2+. Received: 18 December 2000 / Accepted: 17 March 2001 / Published online: 20 June 2001  相似文献   

7.
Monodispersed spherical ZnS particles as well as doped with Cu, Mn ions were synthesized from metal-chelate solutions of ethylenediamine tetraacetate (EDTA) and thioacetamide (TAA). The characterizations of the ZnS-based particles were investigated via TEM, SEM, XRD, TG/DTA and PL measurements. The sphere size was controlled from 50 nm to 1 μm by adjusting the nucleation temperatures and molar ratio of Zn-EDTA to TAA. The emission intensity continuously increased with the increase of the particle size. When the ZnS microspheres were annealed at 550-800 °C, there were two specific emission bands with the centers at 454 nm and 510 nm, which were associated with the trapped luminescence arising from the surface states and the stoichiometric vacancies, respectively. When Cu2+ was introduced into ZnS microspheres, the dominant emission was red-shifted from 454 to 508 nm, fluorescence intensity also sharply increased. However, for the Mn2+-doped ZnS, the emission intensity was significantly enhanced without the shift of emission site.  相似文献   

8.
Undoped and Cu2+ doped (0.2-0.8%) ZnS nanoparticles have been synthesized through chemical precipitation method. Tri-n-octylphosphine oxide (TOPO) and sodium hexametaphosphate (SHMP) were used as capping agents. The synthesized nanoparticles have been analyzed using X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectrometer (FT-IR), UV-vis spectrometer, photoluminescence (PL) and thermo gravimetric-differential scanning calorimetry (TG-DTA) analysis. The size of the particles is found to be 4-6 nm range. Photoluminescence spectra were recorded for ZnS:Cu2+ under the excitation wavelength of 320 nm. The prepared Cu2+-doped sample shows efficient PL emission in 470-525 nm region. The capped ZnS:Cu emission intensity is enhanced than the uncapped particles. The doping ions were identified by electron spin resonance (ESR) spectrometer. The phase changes were observed in different temperatures.  相似文献   

9.
In this work the preparation, characterization and photoluminescence studies of pure and copper-doped ZnS nanophosphors are reported, which are prepared by using solid-state reaction technique at a temperature of 100 °C. The as-obtained samples were characterized by X-ray diffraction (XRD) and UV-VIS Reflectance spectroscopy. The XRD analysis confirms the formation of cubic phase of undoped as well as Cu2+-doped ZnS nanoparticles. Furthermore it shows that the average size of pure as well as copper-doped samples ranges from 15 to 50 nm. The room-temperature PL spectra of the undoped ZnS sample showed two main peaks centered at around 421 and 450 nm, which are the characteristic emissions of interstitial zinc and sulfur vacancies, respectively. The PL of the doped sample showed a broad-band emission spectrum centered at 465 nm accompanied with shoulders at around 425, 450 and 510 nm, which are the characteristic emission peaks of interstitial zinc, sulfur vacancies and Cu2+ ions, respectively. Our experimental results indicate that the PL spectrum confirms the presence of Cu2+ ions in the ZnS nanoparticles as expected.  相似文献   

10.
ZnS nanoparticles with Co2+ doping have been prepared at room temperature through a soft chemical route, namely the chemical co-precipitation method. The nanostructures of the prepared nanoparticles have been analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), selected-area electron diffraction (SAED), and UV-vis spectrophotometer. The sizes of as prepared nanoparticles are found to be in 1–4 nm range. Room-temperature photoluminescence (PL) spectrum of the undoped sample exhibits emission in the blue region with multiple peaks under UV excitation. On the other hand, in the Co2+ doped ZnS samples enhanced visible light emissions with emission intensities of ~35 times larger than that of the undoped sample are observed under the same UV excitation wavelength of 280 nm.  相似文献   

11.
This study has been carried out on the optical properties of polyvinyl-pyrrolidone (PVP), the energy transition process in nanocomposite of PVP capped ZnS:Mn nanocrystalline and the influence of the PVP concentration on the optical properties of the PVP capped ZnS:Mn nanocrystalline thin films synthesized by the wet chemical method. The microstructures of the samples were investigated by X-ray diffraction, the atomic absorption spectroscopy, and transmission electron microscopy. The results showed that the prepared samples belonged to the sphalerite structure with the average particle size of about 2–3 nm. The optical properties of samples are studied by measuring absorption, photoluminescence (PL) spectra and time-resolved PL spectra in the wavelength range from 200 to 700 nm at 300 K. From data of the absorption spectra, the absorption edge of PVP polymer was found about of 230 nm. The absorption edge of PVP capped ZnS:Mn nanoparticles shifted from 322 to 305 nm when the PVP concentration increases. The luminescence spectra of PVP showed a blue emission with peak maximum at 394 nm. The luminescence spectra of ZnS:Mn–PVP exhibits a blue emission with peak maximum at 437 nm and an orange–yellow emission of ion Mn2+ with peak maximum at 600 nm. While the PVP coating did not affect the microstructure of ZnS:Mn nanomaterial, the PL spectra of the PVP capped ZnS:Mn samples were found to be affected strongly by the PVP concentration.  相似文献   

12.
ZnS nanoparticles with Mn2+ doping (1–2.5%) have been prepared through a simple soft chemical route, namely the chemical precipitation method. The nanostructures of the prepared undoped ZnS and Mn2+-doped ZnS:Mn nanoparticles have been analyzed using X-ray diffraction (XRD), Scanning electron microscope (SEM), transmission electron microscope (TEM) and UV–vis spectrophotometer. The size of the particles is found to be in 2–3 nm range. Room-temperature photoluminescence (PL) spectrum of the undoped sample only exhibits a blue-light emission peaked at ∼365 nm under UV excitation. However, from the Mn2+-doped samples, a yellow-orange emission from the Mn2+ 4T16A1 transition is observed along with the blue emission. The prepared 2.5% Mn2+-doped sample shows efficient emission of yellow-orange light with the peak emission at ∼580 nm with the blue emission suppressed.  相似文献   

13.
Monodispersed Mn2+ doped CdS nanoparticles with average size as small as 1.8 nm have been synthesized through chemical method. The nanostructures of the prepared nanoparticles have been confirmed through X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption and transmission electron microscope (TEM) measurements. The photoluminescence emission covering 450-650 nm of the visible region is observed under ultraviolet light excitation, from Mn2+ doped CdS nanoparticles dispersed in dimethyl sulfoxide (DMSO).  相似文献   

14.
Cysteine stabilized ZnS and Mn2+-doped ZnS nanoparticles were synthesized by a wet chemical route. Using the ZnS:Mn2+ nanoparticles as seeds, silica-coated ZnS (ZnS@Si) and ZnS:Mn2+ (ZnS:Mn2+@Si) nanocomposites were formed in water by hydrolysis and condensation of tetramethoxyorthosilicate (TMOS). The influence of annealing in air, formier gas, and argon at 200-1000 °C on the chemical stability of ZnS@Si and ZnS:Mn2+@Si nanoparticles with and without silica shell was examined. Silica-coated nanoparticles showed an improved thermal stability over uncoated particles, which underwent a thermal combustion at 400 °C. The emission of the ZnS@Si and ZnS:Mn2+@Si passed through a minimum in photoluminescence intensity when annealed at 600 °C. Upon annealing at higher temperatures, ZnS@Si conserved the typical emission centered at 450 nm (blue). ZnS:Mn2+@Si yielded different high intensity emissions when heated to 800 °C depending on the gas employed. Emissions due to the Mn2+ at 530 nm (green; Zn2SiO4:Mn2+), 580 nm (orange; ZnS:Mn2+@Si), and 630 nm (red; ZnS:Mn2+@Si) were obtained. Therefore, with a single starting product a set of different colors was produced by adjusting the atmosphere wherein the powder is heated.  相似文献   

15.
We report the structural and optical properties of co-doped ZnS nanocrystals synthesized by chemical co-precipitation method using Methacrylic Acid (MAA) as a capping agent. XRD patterns confirm the zinc blend structure of the samples. As calculated by the Debye-Scherrer formula and TEM image, the mean nanocluster diameter of the sample is ranging between 4-8 nm. EDAX analysis of co-doped sample confirms the presence of Mn2+ and Cd2+ ions in addition to the sulfur deficiencies. Optical characterizations of both doped and co-doped samples are carried out by UV-vis and Photoluminescence (PL) spectroscopy. We observed the coexistence of two metal ions and their effect on the luminescence properties (i.e. red emission) of the host material. The mechanism of energy transfer for the emissions are tried to discuss.  相似文献   

16.
In this work, transition elements, including Cu2+, Ag+, and Au3+, were used to dope in zinc sulfide (ZnS) by chemical solution synthesis to prepare Cu:ZnS, Ag:ZnS, and Au:ZnS nanoparticles, respectively. Transition elements doping ZnS nanoparticles form the electronic energy level between the conduction band and valance band, which will result in the green light emission. There is a zinc sulfide emission shift from blue (~3.01 eV) to green light (~2.15 eV). We also found that Au:ZnS nanoparticles will emit a green light (~2.3 eV) and a blue light (~2.92 eV) at the same time because the mechanism of blue light emission was not broken after Au element had been doped. Furthermore, we used sodium chlorophyllin copper salt to simulate chlorophyll in biological light emission devices (Bio-LED). We combined copper chlorophyll with Cu:ZnS, Ag:ZnS, and Au:ZnS nanoparticles by a self-assembly method. Then, we measured its photoluminescence spectroscopy and X-ray photoelectron spectroscopy to study its emission spectrum and bonding mode. We found that Au:ZnS nanoparticles are able to emit green and blue light to excite the red light emission of copper chlorophyll, which is a potential application of Bio-LED.  相似文献   

17.
Luminescence kinetics and time-resolved luminescence spectra of SiO2, SiO2 doped with ZnS:Mn2+ nanocrystals and SiO2 doped with ZnS:Mn2+, and additionally co-doped with Tb3+, are presented. The purposes of the paper are the analysis of the kinetics of the Tb3+ and Mn2+ intra-shell luminescence and the elucidation of the energy-transfer mechanism between the ZnS:Mn2+ nanocrystals and the Tb3+ ions. We have found a blue luminescence related to defects in the ZnS nanocrystals and an intrinsic luminescence of the SiO2 lattice, which decays in few ns. A yellow luminescence related to the Mn2+ 4T1(G)→6A1 transition and yellow sharp lines related to the 5D47F6, 7F5, 7F4 and 7F3 transitions in Tb3+ are found to decay in ms. A very effective energy transfer between ZnS:Mn2+ nanoparticles and Tb3+ ions has been observed.  相似文献   

18.
Nanometer-sized Eu3+-doped ZnS and Mn2+-doped ZnS particles were prepared by solid-state method at low temperature. The structures and properties of those materials were characterized by X-ray diffraction (XRD) and photoluminescent spectroscopy techniques. The XRD patterns reveal that the doped ZnS nanoparticles belong to zinc-blende structure. The concentration of doping ions has little effect on the sizes of the doped ZnS nanoparticles, which mainly depends on the temperature of preparation. The emission peaks from the 5D07FJ (J=1, 2, and 4) electronic energy transitions of Eu3+ were observed in the emission spectra of the ZnS:Eu3+ nanoparticles. The intensity ratio of the two peaks from the 5D07F1 and 5D07F2 transitions indicates that more Eu3+ ions occupy the sites with no inversion symmetry. For the ZnS:Mn2+ nanoparticles, an orange emission from the 4T16A1 transition of Mn2+ is present, indicating that the doping ions occupy the positions of the ZnS lattices. Meanwhile, UV-induced luminescence enhancement was observed for the ZnS:Mn2+ nanoparticles, the possible reason of which is discussed primarily.  相似文献   

19.
Enhanced photoluminescence and postirradiation luminescence is reported from Ag+-doping ZnS/CdS/ZnS quantum dot–quantum wells (QDQWs) prepared via a reverse micelle process. Controlling the final mole ratio of water-to-surfactant in H2O/Heptane system, the size of a QDQW was estimated to be ~6 nm. Compared to undoped QDQWs, the doped QDQWs exhibited a much stronger orange emission, with a peak blue shift from 615 to 590 nm; the quantum yield was increased from 2.63 to 9.31%, and the remaining luminescence intensity after 2 h ultraviolet irradiation was increased from 71.2 to 94.7%. This improved quantum yield and postirradiation luminescence intensity for doped QDQWs was ascribed to the introduction of Ag+ ions to CdS wells.  相似文献   

20.
《Composite Interfaces》2013,20(2):75-84
ZnS:Cd nanoparticles were synthesized in a reverse micelle system by controlling reaction factors with mercaptoacetic acid (MPA) as a surfactant and N,N-dimethylformamide as an oil phase. X-ray diffraction pattern shows that the ZnS:Cd nanoparticles exhibit a cubic structure and its mean size is calculated around 4 nm. With different molar ratios of Zn2+/S2?, the relative intensity of the emission peaks at 400 and 556 nm changes dramatically due to the more sulfur vacancies which resulted from the imbalance of Zn2+ and S2+ ions. Furthermore, hydrophobic phase-transferred ZnS:Cd nanoparticles were obtained using octylamine, and a highly luminescent phase-transferred ZnS:Cd/polyvinylpyrrolidone (PVP) nanocomposite was prepared by blending the phase-transferred ZnS:Cd with PVP. Infrared absorption suggests that octylamine has been successfully connected with the MPA-coated ZnS:Cd nanoparticles. Unlike the MPA-coated ZnS:Cd which has a very strong emission at 556 nm, the phase-transferred ZnS:Cd has a strong emission at 435 nm, which is ascribed to surface passivation and electron redistribution. In addition, luminescent intensity enhancement was observed for the phase-transferred ZnS:Cd/PVP nanocomposites with various Cd2+ doping concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号