首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structures of the series of four ternary complexes, [Pd(phen)(2,6-PDCA)].4H(2)O (1) (phen=1,10-phenanthroline; 2,6-PDCA=2,6-pyridinedicarboxylic acid), [Pd(bpy)(2,3-PDCA)].3H(2)O (2) (bpy=2,2'-bipyridineand; 2,3-PDCA=2,3-pyridinedicarboxylic acid) and [Pd(phen)(PHT)].2.5H(2)O (3) (PHT=o-phthalic acid ) and [Pd(bpy)(PHT)].1.5H(2)O (4), are determined and the coordination modes of palladium(II) ternary complexes are characterized. All complexes take the mononuclear Pd(II) complexes, in which central Pd(II) atom of each complex has a similar distorted square-planar four coordination geometry. In all complexes, the aromatic heterocyclic compounds, phen and bpy, behave as a bidentate N, N' ligand. In the complex 1 and 2, 2,6-PDCA and 2,3-PDCA behave as a bidentate N, O ligand, and in complex 3 and 4, PHT behaves as a bidentate O, O' ligand.  相似文献   

2.
[Ru(bpy)(2)(Mebpy-COOH)](PF(6))(2).3H(2)O (1), [Ru(phen)(2)(Mebpy-COOH)](ClO(4))(2).5H(2)O (2), [Ru(dppz)(2)(Mebpy-COOH)]Cl(2).9H(2)O (3), and [Ru(bpy)(dppz)(Mebpy-COOH)](PF(6))(2).5H(2)O (4) (bpy = 2,2'-bipyridine, Mebpy-COOH = 4'-methyl-2,2'-bipyridine-4-carboxylic acid, phen = 1,10-phenanthroline, dppz = dipyrido[3,2,-a;2',3-c]phenazine) have been synthesized and characterized spectroscopically and by microanalysis. The [Ru(Mebpy-COOH)(CO)(2)Cl(2)].H(2)O intermediate was prepared by reaction of the monocarboxylic acid ligand, Mebpy-COOH, with [Ru(CO)(2)Cl(2)](n), and the product was then reacted with either bpy, phen, or dppz in the presence of an excess of trimethylamine-N-oxide (Me(3)NO), as the decarbonylation agent, to generate 1, 2, and 3, respectively. For compound 4, [Ru(bpy)(CO)Cl(2)](2) was reacted with Mebpy-COOH to yield [Ru(bpy)(Mebpy-COOH)(CO)Cl](PF(6)).H(2)O as a mixture of two main geometric isomers. Chemical decarbonylation in the presence of dppz gave 4 also as a mixture of two isomers. Electrochemical and spectrophotometric studies indicated that complexes 1 and 2 were present as a mixture of protonated and deprotonated forms in acetonitrile solution because of water of solvation in the isolated solid products. The X-ray crystal structure determination on crystals of [Ru(bpy)2(MebpyCOO)][Ru(bpy)(2)(MebpyCOOH)](3)(PF(6))(7), 1a, and [Ru(phen)(2)(MebpyCOO)](ClO(4)).6H(2)O, 2a, obtained from solutions of 1 and 2, respectively, revealed that 1a consisted of a mixture of protonated and deprotonated forms of the complex in a 1:3 ratio and that 2a consisted of the deprotonated derivative of 2. A distorted octahedral geometry for the Ru(II) centers was found for both complexes. Upon excitation at 450 nm, MeCN solutions of the protonated complexes 1-4 were found to exhibit emission bands in the 635-655 nm range, whereas the corresponding emission maxima of their deprotonated forms were observed at lower wavelengths. Protonation/deprotonation effects were also observed in the luminescence and electrochemical behavior of complexes 1-4. Comprehensive electrochemical studies in acetonitrile show that the ruthenium centers on 1, 2, 3, and 4 are oxidized from Ru(II) to Ru(III) with reversible potentials at 917, 929, 1052, and 1005 mV vs Fc(0/+) (Fc = ferrocene), respectively. Complexes 1 and 2 also exhibit an irreversible oxidation process in acetonitrile, and all compounds undergo ligand-based reduction processes.  相似文献   

3.
The syntheses and X-ray structures of [Co(Me-tpa)O(2)COZnCl(3)], [Co(pmea)O(2)COZnCl(3)].H(2)O [Co(trpyn)O(2)COZn(OH(2))(4)OCO(2)Co(trpyn)](ZnCl(4))(2).H(2)O, [Co(trpyn)(O(2)COH)]ZnCl(4).3H(2)O and [Co(trpyn)(O(2)CO)]ClO(4) are reported (Me-tpa = [(6-methyl-2-pyridyl)methyl]bis(2-pyridylmethyl)amine, pmea = bis(2-pyridylmethyl)-2-(2-pyridylethyl)amine, trpyn = tris(2-(1-pyrazolyl)ethyl)amine). The chelated bicarbonate complex [Co(trpyn)(O(2)COH)]ZnCl(4).3H(2)O is isolated as a crystalline solid from an acidic solution of the parent carbonate [Co(trpyn)(O(2)CO)]ClO(4), and X-ray structural analysis shows that lengthening of the C[double bond, length as m-dash]O(exo) bond and shortening of the C-O(endo) bond accompanies protonation. The bimetallic complex [Co(Me-tpa)O(2)COZnCl(3)] results from the unexpected coordination of ZnCl(3)(-) to the exo O atom of a chelated carbonate ligand. This complex is obtained from both acidic and neutral solutions in which [Zn(2+)] = 1.0 M, while the structurally similar complex [Co(pmea)O(2)COZnCl(3)].H(2)O is isolated from an analogous neutral solution. The trimetallic complex [Co(trpyn)O(2)COZn(OH(2))(4)OCO(2)Co(trpyn)](ZnCl(4))(2).H(2)O crystallises on prolonged standing of [Co(trpyn)(O(2)CO)]ClO(4) in a neutral solution having [Zn(2+)] = 1.0 M. The Zn-O bond lengths in all three complexes are indicative of bonds of significant strength. DFT calculations show that the nature of the bonding interaction between the Co(iii) ion and the endo O atoms of the carbonate ligand remain essentially unaffected by coordination of Zn(2+) to the exo O atom. They also show that such coordination of Zn(2+) decreases the C-O(exo) bond order.  相似文献   

4.
A series of six Ag(I) and Zn(II) coordination polymers, namely, [Ag(2)(ndc)](∞) (1), {[Zn(ndc)(H(2)O)](H(2)O)}(∞) (2), {[Ag(2)(ndc)(4bpy)(2)][Ag(4bpy)(H(2)O)](ClO(4))(H(2)O)(2)}(∞) (3), [Zn(5)(ndc)(4)(4bpy)(2)(μ(3)-OH)(2)](∞) (4), {[Ag(ndc)(abp)][Ag(abp)](H(2)O)(3)}(∞) (5), and {[Zn(2)(ndc)(2)(abp)(H(2)O)(2)](H(2)O)(2)}(∞) (6), have been prepared by using 2,3-naphthalenedicarboxylic acid (H(2)ndc), an analogue of 1,2-benzenedicarboxylic acid (H(2)bdc), and different 4,4'-bipyridyl-like bridging co-ligands 4,4'-bipyridine (4bpy) and trans-4,4'-azobis(pyridine) (abp). The initial complexes 1 and 2 display the unusual two-dimensional (2-D) five-connected (4(8).6(2)) and the 2-D three-connected (4.8(2)) coordination networks, respectively. When two comparable rod-like linkers 4bpy and abp (with different N,N'-donor separations of the molecular backbones of ca. 7 and 9 ?) are further introduced, two one-dimensional (1-D) complexes 3 and 5, a three-dimensional (3-D) coordination framework 4 with (4(3))(4(3).6(3))(4(3).6(5).8(2))(4(4).6(4).8(2))(4(10).6(5)) topology and a 2-D 6(3) layered coordination polymer 6 are constructed. A structural comparison of these complexes with those based on the structurally related bdc ligand suggests that the extended π-conjugated system of ndc with different electronic nature and steric bulk play an important role in constructing the supramolecular architectures for 1-6, which are also regulated by different bridging N-donor co-ligands and metal ions. Moreover, complexes 1-6 show strong solid-state luminescence emissions at room temperature that mainly originate from the intraligand transitions of ndc.  相似文献   

5.
Meyer TJ  Huynh MH 《Inorganic chemistry》2003,42(25):8140-8160
There is a remarkable redox chemistry of higher oxidation state M(IV)-M(VI) polypyridyl complexes of Ru and Os. They are accessible by proton loss and formation of oxo or nitrido ligands, examples being cis-[RuIV(bpy)2(py)(O)]2+ (RuIV=O2+, bpy=2,2'-bipyridine, and py=pyridine) and trans-[OsVI(tpy)(Cl)2(N)]+ (tpy=2,2':6',2' '-terpyridine). Metal-oxo or metal-nitrido multiple bonding stabilizes the higher oxidation states and greatly influences reactivity. O-atom transfer, hydride transfer, epoxidation, C-H insertion, and proton-coupled electron-transfer mechanisms have been identified in the oxidation of organics by RuIV=O2+. The Ru-O multiple bond inhibits electron transfer and promotes complex mechanisms. Both O atoms can be used for O-atom transfer by trans-[RuVI(tpy)(O)2(S)]2+ (S=CH3CN or H2O). Four-electron, four-proton oxidation of cis,cis-[(bpy)2(H2O)RuIII-O-RuIII(H2O)(bpy)2]4+ occurs to give cis,cis-[(bpy)2(O)RuV-O-RuV(O)(bpy)2]4+ which rapidly evolves O2. Oxidation of NH3 in trans-[OsII(tpy)(Cl)2(NH3)] gives trans-[OsVI(tpy)(Cl)2(N)]+ through a series of one-electron intermediates. It and related nitrido complexes undergo formal N- transfer analogous to O-atom transfer by RuIV=O2+. With secondary amines, the products are the hydrazido complexes, cis- and trans-[OsV(L3)(Cl)2(NNR2)]+ (L3=tpy or tpm and NR2-=morpholide, piperidide, or diethylamide). Reactions with aryl thiols and secondary phosphines give the analogous adducts cis- and trans-[OsIV(tpy)(Cl)2(NS(H)(C6H4Me))]+ and fac-[OsIV(Tp)(Cl)2(NP(H)(Et2))]. In dry CH3CN, all have an extensive multiple oxidation state chemistry based on couples from Os(VI/V) to Os(III/II). In acidic solution, the OsIV adducts are protonated, e.g., trans-[OsIV(tpy)(Cl)2(N(H)N(CH2)4O)]+, and undergo proton-coupled electron transfer to quinone to give OsV, e.g., trans-[OsV(tpy)(Cl)2(NN(CH2)4O)]+ and hydroquinone. These reactions occur with giant H/D kinetic isotope effects of up to 421 based on O-H, N-H, S-H, or P-H bonds. Reaction with azide ion has provided the first example of the terminal N4(2-) ligand in mer-[OsIV(bpy)(Cl)3(NalphaNbetaNgammaNdelta)]-. With CN-, the adduct mer-[OsIV(bpy)(Cl)3(NCN)]- has an extensive, reversible redox chemistry and undergoes NCN(2-) transfer to PPh3 and olefins. Coordination to Os also promotes ligand-based reactivity. The sulfoximido complex trans-[OsIV(tpy)(Cl)2(NS(O)-p-C6H4Me)] undergoes loss of O2 with added acid and O-atom transfer to trans-stilbene and PPh3. There is a reversible two-electron/two-proton, ligand-based acetonitrilo/imino couple in cis-[OsIV(tpy)(NCCH3)(Cl)(p-NSC6H4Me)]+. It undergoes reversible reactions with aldehydes and ketones to give the corresponding alcohols.  相似文献   

6.
Mixed ligand complexes of ruthenium(II), [Ru(itpy)(bpy)Cl]ClO(4)1, [Ru(itpy)(phen)Cl]ClO(4)2, [Ru(bitpy)(bpy)Cl]ClO(4)3 and [Ru(bitpy)(phen)Cl]ClO(4)4 have been synthesized and characterized. Complex 3 has also been characterized crystallographically. These complexes exhibit photolability of the Ru-Cl bond. Upon irradiation at 440 nm in the presence of nucleosides and nucleotides the complexes exchange chloride for the nucleoside or nucleotide. The photolability of the Ru-Cl bond depends on the nature of the substituent in the tridentate tpy ligand. Photolysis of the complexes in the presence of a nucleoside or nucleotide also produces 8-oxoguanine due to the oxidation of guanine by the excited states of the complexes. These four complexes exhibit photonuclease properties and bring about the cleavage of plasmid DNA when irradiated at 440 nm. These complexes have been found to be toxic towards NIH 3T3 cells under photolytic conditions.  相似文献   

7.
Reactions between the Os(VI)-nitrido complexes, [OsVI(L2)(Cl)3(N)] (L2 = 2,2'-bipyridine (bpy) ([1]), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), 1,10-phenanthroline (phen), and 4,7-diphenyl-1,10-phenanthroline (Ph2phen)), and bis-(triphenylphosphoranylidene)ammonium azide (PPNN3) in dry CH3CN at 60 degrees C under N2 give the corresponding Os(IV)-azidoimido complexes, [OsIV(L2)(Cl)3(NN3)]- (L2 = bpy = [2]-, L2 = Me2bpy = [3]-, L2 = phen = [4]-, and L2 = Ph2phen = [5]-) as their PPN+ salts. The formulation of the N42- ligand has been substantiated by 15N-labeling, IR, and 15N NMR measurements. Hydroxylation of [2]- at Nalpha with O<--NMe3.3H2O occurs to give the Os(IV)-azidohydroxoamido complex, [OsIV(bpy)(Cl)3(N(OH)N3)] ([6]), which, when deprotonated, undergoes dinitrogen elimination to give the Os(II)-dinitrogen oxide complex, [OsII(bpy)(Cl)3(N2O)]- ([7]-). They are the first well-characterized examples of each kind of complex for Os.  相似文献   

8.
Hydro- and solvo-thermal reactions of d-block metal ions (Mn(2+), Co(2+), Zn(2+) and Cd(2+)) with monosodium 2-sulfoterephthalate (NaH(2)stp) form six 3D coordination polymers featuring cluster core [M(4)(μ(3)-OH)(2)](6+) in common: [M(2)(μ(3)-OH)(stp)(H(2)O)] (M = Co (1), Mn (2) and Zn (3)), [Zn(2)(μ(3)-OH)(stp)(H(2)O)(2)] (4), [Zn(4)(μ(3)-OH)(2)(stp)(2)(bpy)(2)(H(2)O)]·3.5H(2)O (5) and [Cd(2)(μ(3)-OH)(stp) (bpp)(2)]·H(2)O (6) (stp = 2-sulfoterephthalate, bpy = 4,4'-bipyridine and bpp = 1,3-di(4-pyridyl)propane). All these coordination polymers were characterized by single crystal X-ray diffraction, IR spectroscopy, thermogravimetric and elemental analysis. Complexes 1-3 are isostructural coordination polymers with 3D frameworks based on the chair-like [Zn(4)(μ(3)-OH)(2)](6+) core and the quintuple helixes. In complex 4, there exist double helixes in the 3D framework based on the chair-like cluster cores. Complex 5 possesses a 2-fold interpenetration structure constructed from boat-like cluster core and the bridging ligands stp and bpy. For complex 6, the chair-like cluster cores and stp ligands form a 2D (4,4) network which is further pillared by bpp linkers to a 3D architecture. Magnetic studies indicate that complex 1 exhibits magnetic ordering below 4.9 K with spin canting, and complex 2 shows weak antiferromagnetic coupling between the Mn(II) ions with g = 2.02, J(wb) = -2.88 cm(-1), J(bb) = -0.37 cm(-1). The fluorescence studies show that the emissions of complexes 3-6 are attributed to the ligand π-π* transition.  相似文献   

9.
Gao E  Liu L  Zhu M  Huang Y  Guan F  Gao X  Zhang M  Wang L  Zhang W  Sun Y 《Inorganic chemistry》2011,50(11):4732-4741
A series of novel Pd(II) and Pt(II) complexes, [PdL(2)Cl(2)]·DMF (1), [Pd(2)(L-H)(2)(bpy)Cl(2)]·(H(2)O)(2)·DMF (2), [Pd(2)(L-H)(2)(phen)Cl(2)]·2H(2)O (3), [PtL(2)Cl(2)]·H(2)O (4), [Pt(2)(L-H)(2)(bpy)Cl(2)]·2H(2)O (5), and [Pt(2)(L-H)(2)(phen)Cl(2)]·H(2)O (6), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and L = 1,3-benzothiazol-2-amine, have been synthesized and characterized. The competitive binding of the complexes to DNA has been investigated by fluorescence spectroscopy. The values of the apparent DNA binding constant, calculated from fluorescence spectral studies, were 3.8 × 10(6) (K(app)(4)), 2.9 × 10(6) (K(app)(1)), 2.4 × 10(6) (K(app)(6)), 2.0 × 10(6) (K(app)(5)), 1.2 × 10(6) (K(app)(3)), and 6.9 × 10(5) (K(app)(2)). The binding parameters for the fluorescence Scatchard plot were also determined. On the basis of the data obtained, it indicates that the six complexes bind to DNA with different binding affinities in the relative order 4 > 1 > 6 > 5 > 3 > 2. Viscosity studies carried out on the interaction of complexes with Fish Sperm DNA (FS-DNA) suggested that all complexes bind by intercalation. Gel electrophoresis assay demonstrates that all the complexes can cleave the pBR 322 plasmid DNA and bind to DNA in a similar mode. The cytotoxic activity of the complexes has been also tested against four different cancer cell lines. The results show that all complexes have activity against KB, AGZY-83a, Hep-G2, and HeLa cells. In general, the Pt(II) complexes were found to be more effective than the isostructural Pd(II) complexes. The mononuclear complexes exhibited excellent activity in comparison with the dinuclear complexes in these four cell lines. Moreover, on the KB cell line (the human oral epithelial carcinoma), the observed result seems quite encouraging for the six complexes with IC(50) values ranging from 1.5 to 8.6 μM. Furthermore, apoptosis assay with hematoxylin-eosin staining shows treatment with the six complexes results in morphological changes of KB cells. The results induce apoptosis in KB cells.  相似文献   

10.
A series of complexes, [M(bpy)(SAr)2] (M = platinum(II) or palladium(II), bpy = 2,2'-bipyridine, SAr = 2- or 4-(acylamino)benzenethiolate, or 2-(alkylcarbamoyl)benzenethiolate), were synthesized and characterized on the basis of 1H NMR, IR, and electrochemical properties. The structures of [Pt(bpy)(S-2-Ph3CCONHC6H4)2] (1) and [Pt(bpy)(S-2-t-BuNHCOC6H4)2] (3) were determined by X-ray analysis. The complexes have intramolecular NH...S hydrogen bonds between the amide NH group and the sulfur atom. A weak NH...S hydrogen bond in these complexes and [Pd(bpy)(S-2-Ph3CCONHC6H4)2] (4) is detected from the 1H NMR spectra and the IR spectra in chloroform and in the solid state. [Pt(bpy)(S-2-Ph3CCONHC6H4)2] (1) exhibits a remarkably high-energy-shifted lowest-energy band in UV-visible spectra and has a positively shifted oxidation potential. The blue-shift of 42 nm and the positive shift of +0.24 V, as compared to those of [Pt(bpy)(SC6H5)2), are due to the effect of the NH...S hydrogen bond.  相似文献   

11.
We report two new synthetic routes to the dinuclear Ru(I) complexes, [Ru(I)(2)(RCO(2))(CO)(4)(N( wedge )N)(2)](+) (N( wedge )N = 2,2'-bipyridine or 1,10-phenanthroline derivatives) that use RuCl(3).3H(2)O as a starting material. Direct addition of the bidentate diimine ligand to a methanolic solution of [Ru(CO)(2)Cl(2)](n) and sodium acetate yielded a mixture of [Ru(I)(2)(MeCO(2))(CO)(4)(N( wedge )N)(2)](+) (N( wedge )N = 4,4'-dmbpy, and 5,6-dmphen), and [Ru(II)(MeCO(2))(2)(CO)(2)(N( wedge )N)] (N( wedge )N = 4,4'-dmbpy and 5,5'-dmbpy). Single-crystal X-ray studies confirmed that the Ru(II) complexes had a trans-acetate-cis-carbonyl arrangement of the ligands. In contrast, the use of sodium benzoate resulted in the unexpected formation of a Ru-C bond producing ortho-cyclometalated complexes, [Ru(II)(O(2)CC(6)H(4))(CO)(2)(N( wedge )N)], where N( wedge )N = bpy or phen. A second approach used ligand exchange between a bidentate ligand (N( wedge )N) and the pyridine ligands of [Ru(I)(RCO(2))(CO)(2)(py)](2) to convert these neutral complexes into [Ru(I)(2)(RCO(2))(CO)(4)(N( wedge )N)(2)](+). This method, although it involved more steps, was applicable for a wider variety of diimine ligands (R = Me and N( wedge )N = 4,4'-dmbpy, 5,5'-dmbpy, 5,6-dmphen; R = Ph and N( wedge )N = bpy, phen, 5,6-dmphen).  相似文献   

12.
The crystal structures of the series of three complexes, [Cu(Gly)(bpy)Cl].2H2O (1) (Gly=glycine; bpy=2,2'-bipyridine), [Cu(Gly)(phen)Cl]2.7H2O (2) (phen=1,10-phenanthroline), and [Cu(Gly)(bpa)(H2O)Cl] (3) (bpa=2,2'-bipyridylamine) were determined, and the coordination modes of Cu(II) ternary complexes were compared. The central Cu(II) atoms of complexes 1 and 3 have a similar distorted octahedral coordination geometry, while the Cu(II) atom of complex 2 has a distorted square pyramidal coordination. In all complexes, the aromatic heterocyclic compounds bpy, phen, and bpa, behave as a bidentate N,N' ligand, and Gly behaves as a bidentate N,O ligand. DNA-binding properties of the complexes to calf thymus (CT) DNA were studied by using the fluorescence method. Each of the complexes showed binding propensity to CT DNA with the relative order 2>3> or =1. DNA cleavage studies indicate that each of the complexes, especially 2, can cleave plasmid supercoiled pBR322 DNA in the presence of H2O2 and ascorbic acid with cleavage efficiency in the order 2>3 approximately 1. The degradation of the conformation of CT DNA by the complexes was also reflected in the decrease in the intensities of the characteristic CD bands with the relative order 2>3 approximately 1.  相似文献   

13.
Chiu WH  Peng SM  Che CM 《Inorganic chemistry》1996,35(11):3369-3374
Two bis(amido)ruthenium(IV) complexes, [Ru(IV)(bpy)(L-H)(2)](2+) and [Ru(IV)(L)(L-H)(2)](2+) (bpy = 2,2'-bipyridine, L = 2,3-diamino-2,3-dimethylbutane, L-H = (H(2)NCMe(2)CMe(2)NH)(-)), were prepared by chemical oxidation of [Ru(II)(bpy)(L)(2)](2+) and the reaction of [(n-Bu)(4)N][Ru(VI)NCl(4)] with L, respectively. The structures of [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN and [Ru(L)(L-H)(2)]Cl(2).2H(2)O were determined by X-ray crystal analysis. [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN crystallizes in the monoclinic space group P2(1)/n with a = 12.597(2) ?, b = 15.909(2) ?, c = 16.785(2) ?, beta = 91.74(1) degrees, and Z = 4. [Ru(L)(L-H)(2)]Cl(2).2H(2)O crystallizes in the tetragonal space group I4(1)/a with a = 31.892(6) ?, c = 10.819(3) ?, and Z = 16. In both complexes, the two Ru-N(amide) bonds are cis to each other with bond distances ranging from 1.835(7) to 1.856(7) ?. The N(amide)-Ru-N(amide) angles are about 110 degrees. The two Ru(IV) complexes are diamagnetic, and the chemical shifts of the amide protons occur at around 13 ppm. Both complexes display reversible metal-amide/metal-amine redox couples in aqueous solution with a pyrolytic graphite electrode. Depending on the pH of the media, reversible/quasireversible 1e(-)-2H(+) Ru(IV)-amide/Ru(III)-amine and 2e(-)-2H(+) Ru(IV)-amide/Ru(II)-amine redox couples have been observed. At pH = 1.0, the E degrees is 0.46 V for [Ru(IV)(bpy)(L-H)(2)](2+)/[Ru(III)(bpy)(L)(2)](3+) and 0.29 V vs SCE for [Ru(IV)(L)(L-H)(2)](2+)/[Ru(III)(L)(3)](3+). The difference in the E degrees values for the two Ru(IV)-amide complexes has been attributed to the fact that the chelating saturated diamine ligand is a better sigma-donor than 2,2'-bipyridine.  相似文献   

14.
Five new Zn(II)/Cd(II) coordination polymers constructed from di(1H-imidazol-1-yl)methane (L) mixed with different auxiliary carboxylic acid ligands formulated as [Zn(L)(H(2)L(1))(2)·(H(2)O)(0.2)](n) (1), {[Zn(L)(L(2))]·H(2)O}(n) (2), {[Cd(2)(L)(2)(L(2))(2)]·2H(2)O}(n) (3), {[Cd(L)(L(3))]·H(2)O}(n) (4) and [Cd(L)(L(4))](n) (5) (H(3)L(1) = 1,3,5-benzenetricarboxylic acid, H(2)L(2) = 4,4'-oxybis(benzoic acid), H(2)L(3) = m-phthalic acid and H(2)L(4) = p-phthalic acid) have been synthesized under hydrothermal conditions and structurally characterized. Four related auxiliary carboxylic acids were chosen to examine the influences on the construction of these coordination frameworks with distinct dimensionality and connectivity. The coordination arrays of 1-5 vary from 1D zigzag chain for 1, 2D (4,4) layer for 2-4, to 2-fold interpenetrated 3D coordination network with the α-Po topology for 5. The thermal and photoluminescence properties of complexes 1-5 in the solid state have also been investigated.  相似文献   

15.
The novel mixed ligand complexes [M(bpy)(phen-dione)](PF6)2 (M?=?Zn(II), Cd(II) and Hg(II), bpy?=?2,2-bipyridine and phen-dione?=?1,10-phenanthroline-5,6-dione) have been synthesized and characterized by elemental analysis, IR, 1H NMR and electronic absorption spectroscopies. The ν(C=O) of coordinated phen-dione in these complexes are very similar to the free phen-dione ligand showing that phen-dione is not coordinated to metal ion from its C=O sites. Absorption spectra of the complexes show two absorption bands for intraligand transitions. These absorption bands show dependence to the dielectric constant of solvent. These complexes exhibit an intensive fluorescence band around 535?nm in DMF when the excitation wavelength is 260?nm at room temperature. The fluorescence intensity of these complexes is larger than that of the free ligand.  相似文献   

16.
A new set of Ru-Cl complexes containing either the pinene[5,6]bpea ligand (L1) or the C3 symmetric pinene[4,5]tpmOMe (L2) tridentate ligand in combination with the bidentate (B) 2,2'-bipyridine (bpy) or 1,2-diphenylphosphinoethane (dppe) with general formula [RuCl(L1 or L2)(B)](+) have been prepared and thoroughly characterized. In the solid state, X-ray diffraction analysis techniques have been used. In solution, cyclic voltammetry (CV) and 1D and 2D NMR spectroscopy have been employed. DFT calculations have been also performed on these complexes and their achiral analogues previously reported in our group, to interpret and complement experimental results. Whereas isomerically pure complexes ([Ru(II)Cl(L2)(bpy)](BF4), 5 and [Ru(II)Cl(L2)(dppe)](BF4), 6) are obtained when starting from the highly symmetric [Ru(III)Cl3(L2)], 2, isomeric mixtures of cis, fac-[Ru(II)Cl(L1)(bpy)](BF4) (3b/3b'), trans,fac- (3a) and up/down,mer- (3c, 3d) isomers are formed when bpy is added to the less symmetric [Ru(III)Cl3(L1)], 1, in contrast to the case of the bulky dppe ligand that, upon coordination to 1, leads to the trans,fac-[Ru(II)Cl(L1)(dppe)](BF4) (4a) complex as a sole isomer due to steric factors.  相似文献   

17.
The known Os(IV)-cyanoimido complexes, mer-Et4N[OsIV(bpy)(Cl)3(NalphaCNbeta)] (mer-[OsIV=N-CN]-) (bpy = 2,2'-bipyridine) and trans-[OsIV(tpy)(Cl)2(NalphaCNbeta)] (trans-[OsIV=N-CN]) (2,2':6',2' '-terpyridine), have formal electronic relationships with high oxidation state Ru and Os-oxo and -dioxo complexes. These include multiple bonding to the metal, the ability to undergo multiple electron transfer, and the availability of nonbonding electron pairs for donation. Thermodynamic, oxo-like behavior is observed for mer-[OsIV=N-CN]- in the pH-dependence of its Os(VI/V) to Os(III/II) redox couples in 1:1 (v/v) CH3CN:H2O. Oxo-like behavior is also observed in the reaction between mer-[OsVI(bpy)(Cl)3(NalphaCNbeta)]PF6 and benzyl alcohol to give mer-[OsIV(bpy)(Cl)3(NalphaCNbetaH2)]PF6 and benzaldehyde. The reaction is first order in each reactant with kbenzyl(CH3CN, 25.0 +/- 0.1 degrees C) = (8.6 +/- 0.2) x 102 M-1 s-1. Formal NCN degrees transfer, analogous to O-atom transfer, occurs in reactions with tertiary phosphine and hexenes. In CH3CN under N2, a rapid reaction occurs between trans-[OsIV=N-CN] and PPh3 (kPPh3(DMF, 25.0 +/- 0.1 degrees C) = 4.06 +/- 0.02 M-1 s-1) to form the nitrilic N-bound Os(II)-(N-cyano)iminophosphorano product, trans-[OsII(tpy)(Cl)2(NalphaCNbetaPPh3)] (trans-[OsII-NalphaC-Nbeta=PPh3]). It undergoes solvolysis at 45 degrees C after 24 h to give trans-[OsII(tpy)(Cl)2(NCCH3)] and (N-cyano)iminophosphorane (NalphaC-Nbeta=PPh3). The analogue to epoxidation, N-cyanoaziridination of cyclohexene and 1-hexene by mer-[OsIV=N-CN]- and trans-[OsIV=N-CN], occurs at Nbeta to give the Os(IV)-N-cyanoaziridino complexes, mer-Et4N[OsII(bpy)(Cl)3(NalphaCNbetaC6H10)] and trans-[OsII(tpy)(Cl)2(NalphaCNbetaC6H11)], respectively. Oxidation to mer-[OsV(bpy)(Cl)3(NalphaCNbeta)]- greatly accelerates N-cyanoaziridination of cyclohexene, which is followed by slow solvolysis to give mer-[OsIII(bpy)(Cl)3(NCCH3)] and N-cyanoaziridine (NC-NC6H10). The Os-(N-cyano)aziridino complexes are the first well-characterized examples of coordinated cyanoaziridines.  相似文献   

18.
The hydrothermal reactions of Ni(II), 1,2,3‐benzenetricarboxylic acid (1,2,3‐H3btc) and 4,4′‐bipyridine (4,4′‐bpy)/1,2‐bis(4‐pyridyl)ethane (bpa) yield two layered nickel(II) coordination polymers, [Ni2(1,2,3‐btc)(OAc)‐(4,4′‐bpy)2(H2O)]·2H2O ( 1 ) and [Ni(ip)(bpa)] ( 2 ) (ip=isophthalate), respectively. Both complexes are 2‐D coordination network based on 1‐D Ni‐carboxylate chains. The 1,2,3‐btc ligand adopts 3‐bridging mode in complex 1 , but transformed to isophthalate (ip) ligand through decarboxylation in 2 . The formation of the two complexes indicates that hydrothermal conditions andin‐situ ligand reaction have significant effect on constructing coordination polymers.  相似文献   

19.
The second method for the synthesis of cis-[Ru(III)Cl(2)(cyclam)]Cl (1) (cyclam = 1,4,8,11-tetraazacyclotetradecane), with use of cis-Ru(II)Cl(2)(DMSO)(4) (DMSO = dimethyl sulfoxide) as a starting complex, is reported together with the synthesis of [Ru(II)(cyclam)(bpy)](BF(4))(2).H(2)O (2) (bpy = 2,2'-bipyridine) from 1. The syntheses of Ru complexes of tris(2-aminoethyl)amine (tren) are also reported. A reaction between K(3)[Ru(III)(ox)(3)] (ox = oxalate) and tren affords fac-[Ru(III)Cl(3)(trenH)]Cl.(1)/(2)H(2)O (3) (trenH = bis(2-aminoethyl)(2-ammonioethyl)amine = monoprotonated tren) and (H(5)O(2))(2)[K(tren)][Ru(III)Cl(6)] (4) as major products and gives fac-[Ru(III)Cl(ox)(trenH)]Cl.(3)/(2)H(2)O (5) in very low reproducibility. A reaction between 3 and bpy affords [Ru(II)(baia)(bpy)](BF(4))(2) (6) (baia = bis(2-aminoethyl)(iminomethyl)amine), in which tren undergoes a selective dehydrogenation into baia. The crystal structures of 2-6 have been determined by X-ray diffraction, and their structural features are discussed in detail. Crystallographic data are as follows: 2, RuF(8)ON(6)C(20)B(2)H(34), monoclinic, space group P2(1)/c with a = 12.448(3) ?, b = 13.200(7) ?, c = 17.973(4) ?, beta = 104.28(2) degrees, V = 2862(2) ?(3), and Z = 4; 3, RuCl(4)O(0.5)N(4)C(6)H(20), monoclinic, space group P2(1)/a with a = 13.731(2) ?, b = 14.319(4) ?, c = 13.949(2) ?, beta = 90.77(1) degrees, V = 2742(1) ?(3), and Z = 8; 4, RuKCl(6)O(4)N(4)C(6)H(28), trigonal, space group R&thremacr; with a = 10.254(4), c = 35.03(1) ?, V = 3190(2) ?(3), and Z = 6; 5, RuCl(2)O(5.5)N(4)C(8)H(22), triclinic, space group P&onemacr; with a = 10.336(2) ?, b = 14.835(2) ?, c = 10.234(1) ?, alpha = 90.28(1) degrees, beta = 90.99(1) degrees, gamma = 92.07(1) degrees, V = 1567.9(4) ?(3), and Z = 4; 6, RuF(8)N(6)C(16)B(2)H(24), monoclinic, space group P2(1)/c, a = 10.779(2) ?, b = 14.416(3) ?, c = 14.190(2) ?, beta = 93.75(2) degrees, V = 2200.3(7) ?(3), and Z = 4. Compound 4 possesses a very unique layered structure made up of both anionic and cationic slabs, {[K(tren)](2)[Ru(III)Cl(6)]}(n)()(n)()(-) and {(H(5)O(2))(4)[Ru(III)Cl(6)]}(n)()(n)()(+) (n = infinity), in which both sheets {[K(tren)](2)}(n)()(2)(n)()(+) and {(H(5)O(2))(4)}(n)()(4)(n)()(+) offer cylindrical pores that are occupied with the [Ru(III)Cl(6)](3)(-) anions. The presence of a C=N double bond of baia in 6 is judged from the C-N distance of 1.28(2) ?. It is suggested that the structural restraint enhanced by the attachment of alkylene chelates at the nitrogen donors of amines results in either the mislocation or misdirection of the donors, leading to the elongation of the Ru-N(amine) distances and to the weakening of their trans influence. Such structural strain is also discussed as related to the spectroscopic and electrochemical properties of the cis-[Ru(II)L(4)(bpy)](2+) complexes (L(4) = (NH(3))(4), (ethylenediamine)(2), and cyclam).  相似文献   

20.
Two unique adducts of an oxozinc carboxylate cluster with H(2)O and THF were isolated and structurally characterized, [Zn(4)(μ(4)-O)(O(2)CR)(6)(H(2)O)(THF)]·2(THF) and [Zn(4)(μ(4)-O)(O(2)CR')(6)(THF)(3)] (where R = benzoate and R' = 9-antracenecarboxylate anion). The study shows that the zinc centers of the Zn(4)O core can easily form unique coordination environments without breaking of the Zn-O(carboxylate) bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号