首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.
In this work, a cationic surfactant, dodecyltrimethylammonium bromide (DTAB), and an anionic surfactant, sodium dodecylsulfonate (SDSO(3)) or sodium dodecylsulfate (SDSO(4)), were mixed in an equimolar ratio to prepare SDSO(3)-DTAB and SDSO(4)-DTAB binary mixtures. The phase behavior, structure, and morphology of these two surfactant mixtures were investigated by differential scanning calorimetry, synchrotron X-ray scattering, freeze-fracture electron microscopy, and Fourier transform infrared spectroscopy. It was found that upon heating, both of the two systems transform from multilamellar crystalline phase to liquid crystalline (or fluid) phase. It is interesting to find that, although SDSO(3) has a lower molecular weight, the crystalline phase of SDSO(3)-DTAB shows much higher thermostability as compared with that of SDSO(4)-DTAB. Other than this, we observed a large difference in the repeat distances of the two crystalline phases. More interestingly, at 60 °C in the fluid phases, cylindrical micelles formed in the SDSO(3)-DTAB system, while spherical micelles were observed in the SDSO(4)-DTAB system. Our present work demonstrates that a subtle difference in the headgroup structure of the anionic component markedly affects the thermostability, packing structure, and morphology of the surfactant mixtures, which suggests the importance of the match of the head-head and tail-tail interactions between the cationic and anionic surfactants.  相似文献   

2.
The phase transition between unimer and micellar phases of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer Pluronic P105 in aqueous solution has been investigated as a function of temperature using Fourier transform infrared spectroscopy. The transition of 8 wt% Pluronic P105 in aqueous solution was found to occur at 25 °C. As temperature increases, PO blocks appear to be stretched conformers with strong interchain interaction, and the formation of a hydrophobic core in the micellar phase. The EO chains are found to change to a more disordered structure with low-chain packing density from the unimer phase to the micellar phase. Both the EO and PO blocks exhibit dehydration during the phase transition. Received: 17 September 1998 Accepted in revised form: 10 December 1998  相似文献   

3.
用于碱性物质分离的酰胺型反相色谱键合相的制备及评价   总被引:9,自引:4,他引:5  
黄晓佳  刘莺  丛润滋  刘学良  王俊德 《色谱》2001,19(4):293-296
 采用先对硅胶进行氨丙基化 ,然后与辛酰氯键合的方法 ,在国内首次制备了“内嵌”极性官能团酰胺键的反相色谱填料。以甲醇 水为二元流动相 ,用含有中性、酸性和碱性有机化合物的混合物评价了该固定相的疏水性、选择性和亲硅醇基效应 ,并考察了该填料适用的 pH值范围及水解稳定性。结果表明 ,该固定相具有较好的色谱性能 ,且在 pH 2 5~ 7 5时稳定性能良好 ,可有效地用于碱性化合物的分离分析。  相似文献   

4.
Langmuir-Blodgett (LB) films of N-octadecanoyl-L-alanine and its silver and zinc complexes have been investigated by variable-temperature Fourier transform infrared transmission spectroscopy. The thermal stability of LB films is improved through an intermolecular hydrogen bond and metal complex. The intermolecular hydrogen-bonding interaction between hydrophilic head groups in the same monolayers and the metal complex between one head group and another in the neighboring monolayers considerably increase the interaction between the corresponding hydrophobic alkyl chains. It is shown that the transformation of the triclinic subcell packing of the molecules in the LB films prior to and after the silver complex into hexagonal packing occurs before the phase transition accompanied with a change in molecular orientation. The phase transition behavior of the LB films is varied from a small temperature interval to large one depending on the hydrogen bond and metal complex.  相似文献   

5.
张庆合  张凌怡  张维冰  李彤  张玉奎 《分析化学》2004,32(10):1283-1286
以十二烷基键合氧化锆(C12-ZrO2)作为固定相,制备了填充毛细管电色谱(CEC)柱,较为系统地研究了流动相条件对电渗流的影响、填充CEC柱的稳定性、碱性与中性化合物的保留与流动相pH值和有机溶剂含量的关系。C12-ZrO2固定相填充CEC柱在pH3~11.7范围内具有极好的稳定性;利用磷酸盐与氧化锆表面之间较强的相互作用,能够有效解决传统硅胶键合烷基固定相在有机溶剂含量低的流动相条件下不稳定的问题;同时吸附磷酸盐的固定相表面使得在更宽的流动相pH值范围内CEC柱有足够的电渗流,进一步拓宽CEC的应用领域。  相似文献   

6.
The surface tension of an aqueous solution of a hexadecyltrimethylammonium bromide (HTAB) and dodecyltrimethylammonium bromide (DTAB) mixture was measured as a function of the total molality and the composition of DTAB at 298.15 K under atmospheric pressure. The phase diagrams of adsorption and micelle formation were constructed and the excess Gibbs energy was evaluated by analyzing the phase diagrams thermodynamically. Both the excess Gibbs energy in the adsorbed film and the excess surface area are negative; therefore the mutual interaction between HTAB and DTAB is said to be stronger than that between the same species and is enhanced with increasing adsorption. By combining the results with those obtained in previous studies, we claimed that DTAB molecules can use effectively the space among the hydrocarbon chains of HTAB molecules and their polar head groups take a staggered arrangement at the surface so as to reduce the electrostatic repulsion. Consequently the dispersion force between hydrophobic chains becomes stronger. Furthermore, the comparison of the excess Gibbs energy in the adsorbed film with that in the micelle shows that the staggered arrangement of molecules is not necessary in the spherical micelle.  相似文献   

7.
Heat capacities of the ternary systems water-dodecyltrimethylammonium bromide (DTAB)-butanol and water-DTAB-pentanol were measured at 25°C. The standard partial molar heat capacities of pentanol in micellar solutions show a maximum at about 0.35 mol-kg–1 DTAB that has been attributed to a micellar structural transition. This maximum tends to vanish by increasing the alcohol concentration and by decreasing the alcohol alkyl chain length; in the case of butanol it was not detected. The behavior of the standard partial molar heat capacities of alcohols in micellar solutions in the region above the cmc and below the structural transition was explained using a previously reported mass-action model for the alcohol distribution between the aqueous and the micellar phase and the pseudophase transition model for micellization. In the resulting equation the contributions due to the temperature effect on the shift of both the micellization equilibrium and the distribution are shown to be negligible so that only the distribution effect and the shift of the micellization equilibrium due to the added alcohol remain. The distribution constant and the partial molar heat capacities of alcohols in the aqueous and micellar phases have been derived by linear regression. The distribution constant for both alcohols agree well with those previously obtained using different techniques. Since the best fit below the structural transition correlates as well with the experimental points above the structural transition, it seems that no difference exists in the standard partial molar heat capacities of alcohols in the two shapes of the micelles. Also, from the present data and those for alkanols in sodium dodecylsulfate reported in the literature it seems that the standard heat capacity of alcohols in the micellar phase does not depend on both the alcohol alkyl chain length and the nature of the hydrophilic moiety of the head group of the micelles.  相似文献   

8.
Self-assembled layers of alkyl chains grafted onto the surfaces of layered silicates, metal, and oxidic nanoparticles are utilized to control interactions with external media by tuning the packing density of the chains on the surface, head group functionality, and chain length. Characterization through experiment and simulation shows that the orientation of the alkyl layers and reversible phase transitions on heating are a function of the cross-sectional area of the alkyl chains in relation to the available surface area per alkyl chain. On even surfaces, a packing density less than 0.2 leads to nearly parallel orientation of the alkyl chains on the surface, a high degree of conformational disorder, and no reversible melting transitions. A packing density between 0.2 and 0.75 leads to intermediate inclination angles, semicrystalline order, and reversible melting transitions on heating. A packing density above 0.75 results in nearly vertical alignment of the surfactants on the surface, a high degree of crystalline character, and absence of reversible melting transitions. Curved surfaces can be understood by the same principle, taking into account a local radius of curvature and a distance-dependent packing density on the surface. In good approximation, this simple model is independent from the length of the alkyl chains (a minimum length of C10 is required to form sufficiently distinctive patterns), the chemical nature of the surface, and of the surfactant head group. These structural details primarily determine the functionality of alkyl modified surfaces and the temperature of thermal transitions.  相似文献   

9.
Full equilibrium phase diagrams are presented for two ternary systems composed of the cationic surfactant dodecyltrimethylammonium bromide (DTAB), water (D(2)O), and a cyclodextrin, either β-cyclodextrin (β-CD) or (2-hydroypropyl)-β-cyclodextrin (2HPβCD). (2)H NMR, SAXS, WAXS, and visual examination were used to determine the phase boundaries and characterize the nature of the phases formed. Additionally, diffusion (1)H NMR was used to investigate parts of the diagrams. The water solubility of 2HPβCD is 80% (w/w), whereas it is only 1.85% (w/w) for β-CD. Solubility increases for both species upon complexation with DTAB; while the increase is minute for 2HPβCD, it is dramatic for β-CD. Both systems displayed an isotropic liquid solution (L(1)) one-phase region, the extension of which differs extensively between the two systems. Additionally, the DTAB:2HPβCD:water system also comprised a normal hexagonal (H(1)) area, which was not found for the DTAB:β-CD:water system. In the DTAB:β-CD:water system, on the other hand, we found cocrystallization of DTAB and β-CD. From this work we conclude that DTAB and CD molecules form 1:1 inclusion complexes with high affinities. Moreover, we observed indications of an association of 2HPβCD to DTAB micelles in the isotropic solution phase, which was not the case for β-CD and DTAB micelles. This is, to our knowledge, the first complete phase diagrams of surfactant-CD mixtures; as a novel feature it includes the observation of cocrystallization at high concentrations.  相似文献   

10.
The adsorption and condensed film formation on mercury at the negative potential region for binary mixtures of dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB), cetyltrimethylammonium bromide (CTAB), octadecyltrimethylammonium bromide (OTAB) is studied in KBr at various temperatures from 5 to 45 °C. The formation of the CTAB condensed film is hindered with the addition of DTAB and TTAB. There are interactions between unlike hydrophobic chains. The strong interactions between the CTAB molecules do not take place when DTAB or TTAB is present above a certain concentration. This hindering is more pronounced in the case of TTAB compared to the same DTAB concentration, i.e. the increase of the chain length hinders the film formation. The initially adsorbed molecules play a templating role in the kinetics of the film formation and in the self-assembling of the molecules. The initial induction time strongly depends on the temperature. The less surface active CTAB can hinder the OTAB film formation in binary mixtures. Also, increased interaction between OTAB and CTAB can be observed, indicating synergy effects in the film formation in some cases. The temperature range that the film is formed can be changed using mixtures of surfactants. Thus, the development of the film can become impossible, more difficult or even easier. Hysteresis phenomena are observed. The capacity versus time curves in the case that condensed film is formed are treated with the Avrami plot formulation, giving values between 1.5 and 2 indicating a progressive one dimensional nucleation with constant growth rate or a decrease of the nucleation rate during the overall film formation. There is generally a marked effect of the chain length of the alkyl chain on the film formation.  相似文献   

11.
通过用短链离子液体(1-乙基-3-甲基咪唑溴盐[C2mim]Br、1-丁基-3-甲基咪唑溴盐[C4mim]Br)部分或全部取代SDS/DTAB/PEG/NaBr/H2O多水相体系中的无机盐NaBr,用长链离子液体十二烷基-3-甲基咪唑溴盐[C12mim]Br部分取代体系中阳离子表面活性剂DTAB,系统研究了离子液体在分相体系中的作用及其对分相体系性质的影响.研究表明,SDS/DTAB/PEG/NaBr/H2O混合体系形成的四水相体系可以看作"聚合物双水相"与"表面活性剂双水相"共存的结果.短链离子液体([C2mim]Br、[C4mim]Br)较强的亲水性能赋予其较强的盐析能力,在混合体系中表现出明显的盐效应,保证了四水相体系中"聚合物双水相"的存在.短链离子液体与聚合物之间的相互作用及其对表面活性剂之间相互作用的影响均不可忽略.对混合体系的相行为,共存多相的性质有重要的影响.而长链离子液体[C12mim]Br主要通过自身的疏水作用影响"表面活性剂双水相"的性质,充当表面活性剂的角色.然而,[C12mim]Br与DTAB分子结构上的差异,导致表面活性剂分子在"表面活性剂双水相"的两相重新分配,影响了对应两相的体积及萃取能力.可见,通过调节离子液体的烷基链长、混合体系中的含量等可获得具有特定性质的多水相体系.  相似文献   

12.
基于激光丁达尔效应及浊度测定, 考察了改变二元胺的碳桥长度、 多元胺的氨基多寡、 长链伯胺的碳链长度及季铵化等因素对油酸囊泡pH窗口的影响. 结果表明, 二元胺及多元胺主要导致油酸囊泡的pH窗口向碱性方向拓宽, 而长链伯胺和十二烷基三甲基溴化铵(DTAB)不仅可使油酸囊泡的pH窗口向碱性拓宽, 而且可使油酸在酸性pH区域形成另一个介稳至稳定的新囊泡相. 氨基在不同pH下质子化和脱质子化转换是胺类分子调节油酸囊泡pH窗口的共同驱动力, 疏水作用是长链胺类的又一驱动力, 而静电吸引是季铵盐的另一种特殊驱动力. 分子间相互作用的热力学参数及结合能计算结果表明, 二乙烯三胺为代表的二元胺或多元胺在油酸囊泡表面以氢键或离子-偶极作用等非共价结合为主, 其调节功能弱于长链伯胺及DTAB与油酸的疏水共组装或DTAB与油酸的静电吸引作用.  相似文献   

13.
Structure and transition behavior of zinc(II) stearate crystal were investigated by infrared and XAFS spectroscopies. Structure of zinc stearate at room temperature was estimated as follows. From XAFS analysis, the coordination number of the carboxylate groups around the zinc atom was evaluated as 4 and the Zn-O distance as 1.95 A. Based on the infrared spectrum and a normal mode analysis, the conformation of the alkyl chain was confirmed as all-trans and the sub-cell packing was considered as parallel type, and also the coordination form of the carboxylate groups was determined as bridging bidentate type. As increasing temperature, zinc stearate has a solid liquid phase transition at 130 degrees C. At the transition, the alkyl chains goes into liquid like state as reported by Mesubi but the coordination structure was confirmed to be maintained.  相似文献   

14.
判断一种表面活性剂降低油-水界面张力性能的优劣,就需要对界面张力进行准确有效的测量。文章就不同浓度的十二烷基三甲基溴化铵(DTAB)水溶液分别与正庚烷(n-Heptane)和正十六烷(n-Hexadecane)之间的界面张力进行定量的测量,分别得到了在30℃下水-正庚烷和水-正十六烷体系的界面张力随DTAB浓度变化的曲线。结果表明,在DTAB浓度达到其所在体系中的CMC值时,水-正庚烷体系界面张力小于水-十六烷体系界面张力。DTAB具有较强的抗矿盐能力,界面张力随温度升高有所下降。  相似文献   

15.
Wetting of water by hexadecane has been investigated by ellipsometry as a function of the concentration of the cationic surfactant dodecyltrimethylammonium bromide (DTAB) in the aqueous phase and temperature. Three phases are identified: a 2-D gas of hexadecane molecules and DTAB molecules, a 2-D liquid comprising a mixed monolayer of hexadecane and DTAB, and a 2-D 'solid' phase. Evidence is presented to support the hypothesis that the liquid-solid phase transition is actually a wetting transition in which a surface-frozen layer of pure hexadecane wets the liquid-like mixed monolayer of hexadecane and DTAB. The triple point, at which the three phases coexist, is located at a temperature of 17.3 degrees C and DTAB concentration of 0.75 mmol kg (-1). The slopes of the three phase boundaries are analyzed thermodynamically.  相似文献   

16.
考察了一系列基于"甲壳"效应的离子液晶高分子poly(2,5-bis{[6-(4-butoxy-4?-imidazolium phenyl)k-alkyl]oxy carbonyl}styrene bis(fluoroborate)salts)Pk-6-BF4(k=4,8,12,16)的相行为和相结构.热重分析结果表明,该系列聚合物的热分解温度都在320?C以上,说明其均具有优异的热稳定性能.示差扫描量热仪结果表明,P4-6-BF4和P8-6-BF4仅表现出一个玻璃化转变,随着尾链的增长,P12-6-BF4和P16-6-BF4具有一个结晶熔融峰.偏光显微镜、一维广角X衍射、二维广角X衍射结果表明,该系列聚合物均形成稳定的近晶A相结构,并且随着烷烃尾链的增长,层间距增加、近晶结构内部分子堆积形式有所改变.  相似文献   

17.
Understanding the interaction between silicate ions and surfactants is critical for the design and development of mesoporous siliceous materials. We examined the interaction between sodium silicate ions and three different cationic surfactants [namely, cetyltrimethylammonium bromide (CTAB), tetradecyltrimethylammonium bromide (TTAB), and dodecyltrimethylammonium bromide (DTAB)] and an anionic surfactant [sodium dodecyl sulfate (SDS)] in dilute solution at room temperature. From the combination of several techniques, such as conductometric and potentiometric titrations, dynamic light scattering, and isothermal titration calorimetry, the phase behavior of the sodium silicate and CTAB system was determined. We observed that the aggregation behavior of the silicate-CTAB system is similar to that of a polymer-surfactant system. The formation of the silicate-CTAB complex is induced by the adsorption of SiOH and SiO- groups, aided by CTAB unimers. The electrostatic attraction and hydrophobic interaction are the dominant forces controlling the formation of silicate-CTAB complexes. When these complexes are saturated with CTAB unimers, free CTAB micelles are then produced. TEM micrographs revealed that a stable Si-O-Si network is absent within the silicate-CTAB complexes, and surprisingly, stable silicate-CTAB complexes with ordered structure were observed. The present finding is important for understanding the interaction between silicate and surfactant in the synthesis of mesoporous structure in the dilute solution regime.  相似文献   

18.
The complex formation between sodium carboxymethylcellulose (NaCMC) and dodecyltrimethylammonium bromide (DTAB) at various sodium bromide concentrations (C(NaBr)) has been studied by microcalorimetry, turbidimetric titration, steady-state fluorescence measurements, and the fluorescence polarization technique. The addition of salt is found to influence the formation of NaCMC/DTAB complexes markedly. At C(NaBr) = 0.00, 0.01, 0.02, 0.10, and 0.20 M, DTAB monomers form micelle-like aggregates on NaCMC chains to form NaCMC/DTAB complexes above the critical surfactant concentration (C1). At C(NaBr) = 0.23 M, DTAB molecules first form micelles above a 2.46 mM DTAB concentration prompted by the added salt, and then, above C1 = 4.40 mM, these micelles can aggregate with NaCMC chains to form NaCMC/DTAB complexes. However, at C(NaBr) = 0.25 M, there is no NaCMC/DTAB complex formation because of the complete salt screening of the electrostatic attraction between DTAB micelles and NaCMC chains. It is also surprisingly found that the addition of NaBr can bring out a decrease in C1 at C(NaBr) < 0.20 M. Moreover, the addition of NaBr to a mixture of 0.01 g/L NaCMC and 3.6 mM DTAB can directly induce the formation of NaCMC/DTAB complexes. This salt-enhancing effect on the complex formation is explained as the result of competition between the screening of interaction of polyelectrolyte with surfactant and the increasing of polyelectrolyte/surfactant interaction owing to the growth of micelles by added salt. When the increasing of polyelectrolyte/surfactant interaction exceeds the screening of interaction, the complex formation can be enhanced.  相似文献   

19.
Three alkyltrimethylammonium bromides (i.e., dodecyl-, tetradecyl-, and hexadecyltrimethylammonium bromide or DTAB, TTAB, and CTAB, respectively) were used to remove a blue solvent-based ink from a printed surface of high-density polyethylene bottles. Either an increase in the alkyl chain length or the surfactant concentration was found to increase the deinking efficiency. Complete deinking was achieved at concentrations about 3, 8, and 24 times of the critical micelle concentration (CMC) of CTAB, TTAB, and DTAB, respectively. For CTAB, ink removal started at a concentration close to or less than its CMC and increased appreciably at concentrations greater than its CMC, while for TTAB and DTAB, significant deinking was only achieved at concentrations much greater than their CMCs. Corresponding to the deinking efficiency of CTAB in the CMC region, the zeta potential of ink particles was found to increase with increasing alkyl chain length and concentration of the surfactants, which later leveled off at some higher concentrations. Wettability of the surfactants on an ink surface increased with increasing alkyl chain length and concentration of the surfactants. Lastly, solubilization of ink binder in the surfactant micelles was found to increase with increasing alkyl chain length and surfactant concentration. We conclude that adsorption of surfactant on the ink pigment is crucial to deinking due to modification of wettability, zeta potential, pigment/water interfacial tension, and dispersion stability. Solubilization of binder (epoxy) into micelles is necessary for good deinking because the dissolution of the binder is required before the pigment particles can be released from the polymer surface.  相似文献   

20.
Spectroscopic studies have been performed on aqueous dispersions of the surfactant 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine before and after polymerization with ul-traviolet light. Monomers of this lipid can, under certain conditions, convert from the expected spherical liposomal form to a unique phase consisting of hollow tubules. To determine the molecular conformation of these structures we have used Raman and infrared spectroscopies to probe the structure of the hydrocarbon chains and head groups of the lipids, and used absorption spectroscopy and resonance enhanced Raman scattering of the colored polymer to monitor the length and structure of the diacetylenic polymer backbone. Unusual C? H stretch-ing Raman bands imply that the hydrocarbon chain packing in the monomeric bilayers is different from that observed in other phosphatidylcholines, and that a distrubance in alkyl chain packing occurs on polymerization. Depending on irradiation conditions and the dispersal state of the lipid the polymer chains may be of at least three different colors, from which distinct resonance Raman spectra are obtained. The effective bond conjugation lengths range from quite short in the yellow polymer produced in sonicated vesicles to extremely long in a blue component seen in polymerized tubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号