首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
基于热模塑法制备HDPE仿生超疏水表面   总被引:1,自引:0,他引:1  
研究了热模塑法在制备超疏水高密度聚乙烯(HDPE)膜中的应用。以高岭土增强的聚二甲基硅氧烷(PDMS)为软模板,采用热模塑技术,将荷叶表面的微结构信息复制到HDPE膜表面。接触角测量结果显示,10%掺杂量的PDMS软模板复制得到的HDPE膜表面,与水的接触角高达156°,呈现超疏水性。扫描电镜照片显示,PDMS软模板具有与荷叶表面互补的"负型结构",而HDPE膜表面则具有与荷叶类似的微米—纳米复合粗糙结构。此法无需溶剂,可推广制备其它热塑性高聚物的超疏水表面。  相似文献   

2.
通过聚二甲基硅氧烷(PDMS)与碳纤维织物复合, 采用模板法在PDMS聚合物表面构筑微阵列结构, 制备了一种具有可重复粘贴性的超疏水薄膜. 研究结果表明, 该薄膜微结构表面的接触角为154°, 滚动角为14°, 具有低黏附的超疏水特性. 而PDMS与碳纤维织物的紧密结合, 赋予了超疏水薄膜较高的黏接力和力学性能, 断裂强度达到116.96 MPa. 所制备的超疏水薄膜可粘贴于多种材料表面, 同时经过30 d的长时间粘贴以及50次的循环粘贴后, 该薄膜依然保持着较高的黏附性能及超疏水特征, 表明超疏水薄膜具有良好的力学稳定性及耐久性, 满足长时间可重复使用的要求, 可应用于对破损超疏水涂层的快速、 大面积粘贴修复.  相似文献   

3.
利用软模板和紫外光固化技术制备超疏水表面   总被引:4,自引:0,他引:4  
研究了一种制备超疏水表面的新方法.该方法以复制了荷叶表面结构的聚二甲基硅氧烷(PDMS)弹性体为软模板.利用可紫外光交联预聚物在模板压印条件下固化成型,得到了具有微乳突结构的仿荷叶表面.制备的仿荷叶表面表现出了超疏水性能.通过对紫外光固化体系中的单体含量、交联剂含量、引发剂含量、以及紫外曝光时间等因素的研究,得到了使仿荷叶表面的疏水性优化的条件.  相似文献   

4.
利用一种简单的热解方法, 制备了具有纳米结构的大面积碳膜, 膜表面经过低表面能物质氟硅烷修饰后具有超疏水性.  相似文献   

5.
用含氟丙烯酸酯无规共聚物制备超疏水膜   总被引:4,自引:0,他引:4  
用微乳液聚合法制备了丙烯酸全氟烷基乙酯和甲基丙烯酸甲酯的无规共聚物,并对其进行了表征.采用溶剂挥发成膜法一步制备了具有超疏水性的该聚合物膜,水滴在该聚合物膜上的静态接触角可达151°~160°,滚动角小于3°.通过扫描电子显微镜观察发现该聚合物膜表面分布了许多乳突状突起和微孔洞,并具有微米和纳米尺度相结合的复合杂化结构.该类超疏水表面的形成是由适度粗糙的表面和低表面能相互结合引起的.探讨了该类超疏水膜的形成机理.  相似文献   

6.
花生叶表面的高黏附超疏水特性研究及其仿生制备   总被引:2,自引:0,他引:2       下载免费PDF全文
花生是一种常见的豆科作物.与低黏附超疏水的荷叶不同,花生叶表面同时具有超疏水和高黏附特性.水滴在花生叶表面的接触角为151±2°,显示出超疏水特性.此外,水滴可以牢固地附着在花生叶表面,将花生叶翻转90°甚至180°,水滴均不会从表面滚落,显示了良好的黏附性(黏附力超过80μN).研究发现,花生叶表面呈现微纳米多级结构,丘陵状微米结构表面具有无规则排列的纳米结构.花生叶表面特殊的微纳米多尺度结构是其表面呈现高黏附超疏水特性的关键因素.结合实验数据,对花生叶表面特殊浸润性机理进行了简要阐述.受此启发,利用聚二甲基硅氧烷复形得到了与花生叶表面微结构类似的高黏附疏水表面.本文以期为仿生制备高黏附超疏水表面提供新思路.  相似文献   

7.
超疏水膜表面构造及构造控制研究进展   总被引:1,自引:0,他引:1  
本文就表面构造对膜表面亲、疏水性的最新研究成果进行了概括,表面化学成分及化学结构聚集态是获得超疏水膜的基础,表面的形貌和微构造是维持超疏水性质的保障。利用含氟材料极低的表面能,将表面化学结构的聚集态,表面形貌微观构造及排列方式进行有机结合,将会获得理想的超疏水材料。  相似文献   

8.
软模板印刷法制备超疏水性聚苯乙烯膜   总被引:3,自引:0,他引:3  
金美花  廖明义  翟锦  江雷 《化学学报》2008,66(1):145-148
首次利用软模板印刷的方法,以微米-亚微米-纳米复合结构的PDMS为软模板,在平滑聚苯乙烯表面上成功制备了同样具有微米-亚微米-纳米复合结构的超疏水表面,该表面与水的接触角高达161.2º。软模板印刷方法可以用在其它热塑性聚合物如聚丙烯、聚甲基丙烯酸甲酯和聚碳酸酯等材料上,是一种简单有效地制备超疏水性表面的方法。  相似文献   

9.
孙巍  周雨辰  陈忠仁 《高分子学报》2012,(12):1459-1464
利用粒子辅助水滴模板法的实施获得规则蜂窝状图案化多孔结构模板,并进一步利用聚二甲基硅氧烷(PDMS)复制转移技术获得表面具有微米尺寸蜂窝状突起阵列的反向图案化结构.以这种图案化突起结构作为微米尺寸所提供的微米级粗糙度为基础,设计了2种的简单的二次纳米结构的引入过程,最终实现了微米级阵列和纳米级粗糙度的复合.第一种方法借助银镜反应来实现纳米银结构的化学沉积,最终在PDMS阵列表面获得了致密的纳米银颗粒沉积层,并成功获得了表面接触角达166度的超疏水性质.第二种方法利用了聚电解质/二氧化硅粒子层层静电自组装的方法引入纳米结构,结果在仅仅进行了2个组装循环的条件下即可获得超疏水性质的表面复合结构.通过简单的实验设计试图提供一种基于水滴模板法的微纳复合超疏水结构的普适性制备方法.  相似文献   

10.
以铝片为基底, 经电化学腐蚀和沸水处理制备了多级微纳米结构; 通过气相沉积和涂油分别制备了超疏水表面、 疏水超润滑(slippery)表面和亲水slippery表面; 探究了表面不同的特殊浸润性(超亲水、 超疏水、 疏水slippery和亲水slippery)对液滴凝结的影响. 结果表明, 超亲水表面的液滴凝结属于膜状冷凝, 超疏水表面和slippery表面的液滴凝结均属于滴状冷凝. 超疏水表面液滴合并时, 合并的液滴会不定向弹离表面. 疏水slippery表面和亲水slippery表面由于表面浸润性的不同导致液滴成核密度和液滴合并的差异, 亲水slippery表面凝结液滴的最大体积远大于疏水slippery表面凝结液滴的最大体积. 4种表面的雾气收集效率由大到小依次为亲水slippery表面>疏水slippery表面>超亲水表面>超疏水表面.  相似文献   

11.
以新鲜玫瑰花花瓣正面为模板, 采用模板印刷法制备具有微米级阵列凹坑和纳米级沟壑结构的聚二甲基硅氧烷(PDMS)薄膜, 通过对该薄膜逐级拉伸改变其微观结构的分布; 采用场发射扫描电子显微镜(SEM)和原子力显微镜(AFM)观察了不同拉伸程度下薄膜表面微观结构的变化, 采用高敏感性微电力学天平测试了样品表面微观结构变化过程中水滴的黏附力, 分析了其微观结构分布与水滴黏附性质的关系; 采用接触角测量仪表征不同拉伸条件下薄膜的浸润性. 结果表明, 随着PDMS薄膜被逐次拉伸, 单位面积内的凹坑结构数目减少, 且凹坑逐渐分离, 凹坑的深度逐渐降低, 水滴更容易浸入到凹坑结构中, 因此水滴与薄膜的黏附力急剧增大; 随着薄膜进一步拉伸, 纳米级沟壑结构会随着凹坑的拉伸而不断伸展, 纳米级沟壑结构的面积增加, 纳米沟壑结构诱捕的空气量逐渐上升, 导致水滴与薄膜表面的接触面积降低, 使得水滴与薄膜的黏附力下降; 继续拉伸PDMS薄膜, 纳米级沟壑结构进一步伸展, 水滴逐渐浸入纳米级沟壑结构中, 水滴与薄膜的黏附力缓慢增大, 当水滴完全进入到纳米级沟壑中时, 水滴与薄膜的黏附力达到极大值, 此时继续拉伸PDMS薄膜, 纳米级沟壑结构随着拉伸程度的增加继续伸展, 水滴与薄膜的接触面积稍有减少, 黏附力将有所下降, 直至薄膜被完全破坏. 由此可见, 微米级凹坑结构和纳米级褶皱结构的分布是影响PDMS薄膜对水滴黏附性质的主要因素.  相似文献   

12.
Poly(dimethylsiloxane) (PDMS) substrates are used in many applications where the substrates need to be elongated and various treatments are used to regulate their surface properties. In this article, we compare the effect of three of such treatments, namely, UV irradiation, water plasma, and plasma polymerization, both from a molecular and from a macroscopic point of view. We focus our attention in particular on the behavior of the treated surfaces under mechanical stretching. UV irradiation induces the substitution of methyl groups by hydroxyl and acid groups, water plasma leads to a silicate-like layer, and plasma polymerization causes the formation of an organic thin film with a major content of anhydride and acid groups. Stretching induces cracks on the surface both for silicate-like layers and for plasma polymer thin coatings. This is not the case for the UV irradiated PDMS substrates. We then analyzed the chemical composition of these cracks. In the case of water plasma, the cracks reveal native PDMS. In the case of plasma polymerization, the cracks reveal modified PDMS. The contact angles of plasma polymer and UV treated surfaces vary only very slightly under stretching, whereas large variations are observed for water plasma treatments. The small variation in the contact angle values observed on the plasma polymer thin film under stretching even when cracks appear on the surface are explained by the specific chemistry of the PDMS in the cracks. We find that it is very different from native PDMS and that its structure is somewhere between Si(O2) and Si(O3). This is, to our knowledge, the first study where different surface treatments of PDMS are compared for films under stretching.  相似文献   

13.
Super-hydrophobic surfaces have been fabricated by casting polydimethylsiloxane (PDMS) on a textured substrate of known surface topography, and were characterized using contact angle, atomic force microscopy, surface free energy calculations, and adhesion measurements. The resulting PDMS has a micro-textured surface with a static contact angle of 153.5° and a hysteresis of 27° when using de-ionized water. Unlike many super-hydrophobic materials, the textured PDMS is highly adhesive, allowing water drops as large as 25.0 μL to be inverted. This high adhesion, super-hydrophobic behavior is an illustration of the "petal effect". This rapid, reproducible technique has promising applications in transport and analysis of microvolume samples.  相似文献   

14.
Summary: Rough polydimethylsiloxane (PDMS) surface containing micro‐, submicro‐ and nano‐composite structures was fabricated using a facile one‐step laser etching method. Such surface shows a super‐hydrophobic character with contact angle higher than 160° and sliding angle lower than 5°, i.e. self‐cleaning effect like lotus leaf. The wettabilities of the rough PDMS surfaces can be tunable by simply controlling the size of etched microstructures. The adhesive force between etched PDMS surface and water droplet is evaluated, and the structure effect is deduced by comparing it with those own a single nano‐ or micro‐scale structures. This super‐hydrophobic PDMS surface can be widely applied to many areas such as liquid transportation without loss, and micro‐pump (creating pushing‐force) needless micro‐fluidic devices.

Etched PDMS surface containing micro‐, submicro‐, and nano‐composite structures shows a self‐cleaning effect with water CA as high as 162° and SA lower than 5°.  相似文献   


15.
本文采用模板印刷法制备得到了“人造玫瑰花花瓣”,即具有玫瑰花花瓣结构的PDMS薄膜,通过对该薄膜逐级拉伸改变微观结构的分布;采用环境扫描电镜(ESEM)观察了不同拉伸程度下薄膜表面微观结构的变化,采用高敏感性微电力学天平测试了样品表面微观结构变化过程中水滴的粘附力,分析了微观结构分布与水滴粘附性质的关系;采用接触角测量仪表征不同拉伸条件下薄膜的浸润性.实验结果表明随着PDMS薄膜被逐次拉伸,单位面积内玫瑰花花瓣乳突的数目减少,纳米褶皱面积不断增加,而纳米级褶皱结构尺寸随着拉伸基本上不发生变化,直到样品破坏;与微观结构变化相对应的,该表面对水滴的粘附力先增大后减小,直到该表面彻底破坏.由此可见,微米结构及纳米结构的分布是影响玫瑰花花瓣对水滴粘附的主要因素.  相似文献   

16.
Instantaneous adhesion between different materials is a requirement for several applications ranging from electronics to biomedicine. Approaches such as surface patterning, chemical cross-linking, surface modification, and chemical synthesis have been adopted to generate temporary adhesion between various materials and surfaces. Because of the lack of curing times, temporary adhesives are instantaneous, a useful property for specific applications that need quick bonding. However, to this day, temporary adhesives have been mainly demonstrated under dry conditions and do not work well in submerged or humid environments. Furthermore, most rely on chemical bonds resulting from strong interactions with the substrate such as acrylate based. This work demonstrates the synthesis of a universal amphibious adhesive solely by combining solid polytetrafluoroethylene (PTFE) and liquid polydimethylsiloxane (PDMS) polymers. While the dipole-dipole interactions are induced by a large electronegativity difference between fluorine atoms in PTFE and hydrogen atoms in PDMS, strong surface wetting allows the proposed adhesive to fully coat both substrates and PTFE particles, thereby maximizing the interfacial chemistry. The two-phase solid–liquid polymer system displays adhesive characteristics applicable both in air and water, and enables joining of a wide range of similar and dissimilar materials (glasses, metals, ceramics, papers, and biomaterials). The adhesive exhibits excellent mechanical properties for the joints between various surfaces as observed in lap shear testing, T-peel testing, and tensile testing. The proposed biocompatible adhesive can also be reused multiple times in different dry and wet environments. Additionally, we have developed a new reactive force field parameterization and used it in our molecular dynamics simulations to validate the adhesive nature of the mixed polymer system with different surfaces. This simple amphibious adhesive could meet the need for a universal glue that performs well with a number of materials for a wide range of conditions.  相似文献   

17.
The surface of polydimethylsiloxane (PDMS) was modified using a CO2-pulsed laser to evaluate the changes in physical and biological properties of the treated surface. Attachment of anchorage dependent cells, namely baby hamster kidney (BHK) fibroblastic cells, on PDMS surface was investigated in stationary culture conditions. BHK cell adhesion and growth on the PDMS surfaces were studied using scanning electron microscopy (SEM) and optical microscopy. To evaluate the surface wettability, water drop contact angles were determined. The laser treated PDMS surfaces showed high hydrophobicity and low cell adhesion, no spreading and growth in comparison with the unmodified PDMS. It was found that both the wettability and surface structure of the PDMS surface control cell attachment and growth.  相似文献   

18.
The preparation and interfacial properties of a new type of tethered, thin-film lubricant coating are presented. These coatings are composed of three components: a dense self-assembled monolayer (SAM) underlayer that presents reactive vinyl groups at its surface; a cross-linked polydimethylsiloxane (PDMS) overlayer that is covalently tethered to the SAM; and free, mobile linear PDMS chains dispersed in the network. We investigate the influence of the molecular weight (Ms) and concentration of the free PDMS chains on the structure and equilibrium swelling properties of the cross-linked films. Using a bead-probe lateral force microscopy measurement technique, we also quantify the interfacial friction and adhesion characteristics of surfaces functionalized with these coatings. We find that both the volume fraction and the molecular weight of free PDMS molecules in the coatings influence their interfacial friction and adhesion properties. For example, the addition of short PDMS chains in dry, cross-linked PDMS thin films yields tethered surface coatings with ultralow friction coefficients (mu = 5.2 x 10(-3)). An analysis based on classical lubrication theory suggests that the reduction in friction force produced by free polymer is a consequence of the gradual separation of asperities on opposing surfaces and the consequent substitution of solid-solid friction by viscous drag of the free polymer chains in the network.  相似文献   

19.
采用原子力显微镜(AFM)和透射电镜(TEM)研究了聚苯乙烯/聚二甲基硅氧烷嵌段共聚物(PS-b-PDMS)薄膜的相形态.结果表明,当采用甲苯作为溶剂,旋转涂膜的薄膜样品呈现网络状的形态分布在表面,而样品所对应的透射电镜照片中,PDMS相作为球状分布在PS的连续相中.退火温度对共聚物表面形态有一定的影响,当退火温度高于PDMS的玻璃化温度,表面中PDMS相增多.PS-b-PDMS嵌段共聚物的表面形态随着所用溶剂的变化而有所不同,当采用甲苯作为溶剂时,样品的PS相形成凹坑分布在PDMS的相区之中,而采用环己烷作为溶剂时,PS相作为突起分布在PDMS相区之中.另外,基底对共聚物薄膜表面形态的有较大的影响,当采用硅晶片作为基底时,样品中的PDMS相和PS相呈现近似平行于表面的层状结构.  相似文献   

20.
The interfacial properties of end-linked polydimethylsiloxane (PDMS) films on silicon are examined. Thin cross-linked PDMS films (~10 μm thick) were synthesized over a self-assembled monolayer supported on a silicon wafer. By systematically varying the concentration of monofunctional PDMS in a mixture with telechelic precursor molecules, structures ranging from near-ideal elastic networks to poorly cross-linked networks composed of a preponderance of dangling/pendent chains were synthesized. Lateral force microscopy (LFM) employing bead probes was used to quantify the effect of network structure on the interfacial friction coefficient and residual force. Indentation measurements employing an AFM in force mode were used to characterize the elastic modulus and the pull-off force for the films as a function of pendent chain content. These measurements were complemented with conventional mechanical rheometry measurements on similar thick network films to determine their bulk rheological properties. All networks studied manifested interfacial friction coefficients substantially lower than that of bare silicon. PDMS networks with the lowest pendent chain content displayed friction coefficients close to 1 order of magnitude lower than that of bare silicon, whereas networks with the highest pendent chain content manifested friction coefficients about 3 times lower than that of bare silicon. At intermediate sliding velocities, a crossover in the interfacial friction coefficient was observed, wherein cross-linked PDMS films with the least amount of pendent chains exhibit the highest friction coefficient. These observations are discussed in terms of the structure of the films and relaxation dynamics of elastic strands and dangling chains in tethered network films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号