首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reaction mechanism of (CH3)3CO(.) radical with NO is theoretically investigated at the B3LYP/6-31G* level. The results show that the reaction is multi-channel in the single state and triplet state. The potential energy surfaces of reaction paths in the single state are lower than that in the triple state. The balance reaction: (CH3)3CONO←→ (CH3)3CO(.)+NO, whose potential energy surface is the lowest in all the reaction paths, makes the probability of measuring (CH3)3CO(.) radical increase. So NO may be considered as a stabilizing reagent for the (CH3)3CO(.)radical.  相似文献   

2.
The reaction mechanism of (CH3)3CO with CO has been theoretically investigated using density-functional theory (DFT) calculations at B3LYP/6-31G* level. In order to get more reliable energy values the single-point energy is evaluated at CCSD (T)/6-31++G** level. The results show that the reaction is multi-channel and the reaction of (CH3)3CO radical with CO mostly produces (CH3)3C + CO2. The reaction could play a role in eliminating air pollution.  相似文献   

3.
在G3(MP2)//B3LYP/6-311 G(d,p)水平上,对CH3S自由基与CO气相反应的微观机理进行了理论研究.结果表明:该反应共存在3个反应通道,产物分别为CH3 OCS,CH2S HCO和CH2S HOC.由于形成产物CH3 OCS的活化势垒较低,因此为主要反应通道,这与实验观察到的结果是一致的.  相似文献   

4.
采用密度泛函理论BB1K/6-31+G(d,p)计算了反应CF3CH2CH3+OH各反应通道上驻点的稳定结构和振动频率, 并分别在BMC-CCSD, MC-QCISD和G3(MP2)水平上进行了单点能校正. 运用变分过渡态理论, 在BMC-CCSD//BB1K, MC-QCISD//BB1K, G3(MP2)//BB1K以及BB1K水平上计算了各反应通道的速率常数, 讨论了-CH2和-CH3基团上H提取通道对总反应的贡献, 并与已有实验和理论结果进行了对比. 计算结果表明, BMC-CCSD水平上的速率常数与实验测量值符合得很好, 进而给出了该水平上反应在200~1000 K温度范围内速率常数k(cm3?molecule-1?s-1)的三参数表达式: k=1.90×10-21T3.21exp(-292.62/T).  相似文献   

5.
Alkoxy radicals RO? form an important class of hydrocarbon oxidation intermediates in combustion processes, interstellar and atmospheric chemistry[1—8]. The number of NO to NO2 conversions can take place during the oxidation of the parent hydrocarbon in the atmosphere and hence affecting tropospheric ozone production. The experimental and theoretical investi-gations of the reactions of alkoxy radicals will be ad-vantageous for safeguarding the environment. Despite the importance of alkoxy r…  相似文献   

6.
The potential energy surface for the CH3S NO2 reaction has been studied using the ab initio G3(MP2) method. A variety of possible complexes and saddle points along the minimum energy reaction paths have been characterized at UMP2 (full)/6-31G(d) level. The calculations reveal dominating reaction mechanisms of the title reaction: CH3S NO2 firstly produce intermediate CH3SONO,then break up into CH3SO NO. The results are valuable to understand the atmospheric sulfur compounds oxidation mechanism.  相似文献   

7.
The reaction for CH3CH2+O(3P) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single-point calculations for all the stationary points were carried out at the QCISD(T)/6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major products are the CH2O+CH3, CH3CHO+H and CH2CH2+OH in the reaction. For the products CH2O+CH3 and CH3CHO+H, the major production channels are A1: (R)→IM1→TS3→(A) and B1: (R)→IM1→TS4→(B), respectively. The majority of the products CH2CH2+OH are formed via the direct abstraction channels C1 and C2: (R)→TS1(TS2)→(C). In addition, the results suggest that the barrier heights to form the CO reaction channels are very high, so the CO is not a major product in the reaction.  相似文献   

8.
用从头算分了轨道法,在UHF/6-31G,水平上研究了CH3O与NO在单、三态势能面上的反应机理,发现该反应在两个势能面上均在两个彼此平行的反应途径,分别生产成产物CH3ON(a)和HCHO+HNO(b),优化了四个途径的所有驻点的几何构型,用Morokuma的数值分析方法计算了它们的内禀反应坐标(IRC),各途径经零点能(ZPE)校正的活化位垒,单重态途径(a)为86.86kJ.mol^-1途径  相似文献   

9.
采用密度泛函理论和MP2方法研究了3-甲基环状乙撑磷酸二酯(MEP)与甲醇的反应途径:(Ⅰ)CH3O-+MEP;(Ⅱ)CH3OH+MEP;(Ⅲ)CH3O-+HMEP(MEP的质子化形式);(Ⅳ)CH3OH+HMEP.在B3LYP/6-31++G(d,p)水平上优化了四条反应途径的反应物、中间体、过渡态及产物的几何构型,并在同水平上进行了自然电荷分析,然后在MP2/6-311++G(3df,2p)水平上计算了各驻点的单点能.采用极化连续介质模型(PCM)研究了各途径在苯、甲醇和水溶液中的溶剂化效应.计算结果表明,溶剂效应使途径(Ⅰ)的自由能垒降低,而使途径(Ⅱ)和(Ⅳ)的决速步骤的自由能垒升高.在气相和苯溶剂中途径(Ⅳ)是反应的优势途径,在甲醇和水溶剂中途径(Ⅰ)则成为最优.研究结果进一步表明实验条件下途径(Ⅱ)与(Ⅳ)对总醇解反应的贡献相当.  相似文献   

10.
<正> The interaction between CH3OH and H2CO has been studied by ab ini-tio method at the level of STO-3G and 6-311G basis sets. It has been found that there are two possible complexes; a hydrogen bonded complex CH3OH...CH2O(Ⅰ) and an electron donor-acceptor complex CH3OH.....OCH2(Ⅱ).The stabilization energies of (Ⅰ) and (Ⅱ) are 14. 6 and 3. 6kJ/mol (STO-3G results) or 25. 1 and 17. 1kJ/mol (6-311G results) respectively. The nature of these complexes has been discussed by using the energy decomposition scheme.  相似文献   

11.
采用量子化学中的从头计算方法, 在MP2/6-31G(d,p)水平上研究了不饱和硼烯CH3NH=B:的结构及重排反应机理。结果表明, CH3NH=B:的单线态结构比三线态结构稳定, 该分子的基态是单线态。分子CH3NH=B:可以发生3种不同的重排反应。本文找到了这3种重排反应的过渡态, 并详细计算了不饱和硼烯CH3NH=B:重排反应的动力学函数, 据此讨论了不饱和硼烯CH3NH=B:的稳定性问题。  相似文献   

12.
The elementary reaction of the CH3 radical with NO2 was investigated by time-resolved FTIR spectroscopy and quantum chemical calculations. The CH3 radical was produced by laser photolysis of CH3Br or CH3I at 248 nm. Vibrationally excited products OH, HNO and CO2 were observed by the time-resolved spectroscopy for the first time. The formation of another product NO was also verified. According to these observations, the product channels leading to CH3O+NO, CH2NO+OH and HNO+H2CO were identified. The channel of CH3O+NO was the major one. The reaction mechanisms of the above channels were studied by quantum chemical calculations at CCSD(T)/6-311++G(df,p)//MP2/6-311G(d,p) level. The calculated results fit with the experimental observations well.  相似文献   

13.
采用密度泛函理论和MP2方法研究了3-甲基环状乙撑磷酸二酯(MEP)与甲醇的反应途径: (I) CH3O-+MEP; (II) CH3OH+MEP; (III) CH3O-+HMEP (MEP的质子化形式); (IV) CH3OH+HMEP. 在B3LYP/6-31++G(d,p)水平上优化了四条反应途径的反应物、中间体、过渡态及产物的几何构型, 并在同水平上进行了自然电荷分析, 然后在MP2/6-311++G(3df,2p)水平上计算了各驻点的单点能. 采用极化连续介质模型(PCM)研究了各途径在苯、甲醇和水溶液中的溶剂化效应. 计算结果表明, 溶剂效应使途径(I)的自由能垒降低, 而使途径(II)和(IV)的决速步骤的自由能垒升高. 在气相和苯溶剂中途径(IV)是反应的优势途径, 在甲醇和水溶剂中途径(I)则成为最优. 研究结果进一步表明实验条件下途径(II)与(IV)对总醇解反应的贡献相当.  相似文献   

14.
利用密度泛函(DFT)和自然键轨道理论(NBO)及高级电子耦合簇[CCSD(T)]和电子密度拓扑(AIM)方法,对单重态和三重态CH2与CH2CO反应的微观机理进行了研究.在B3LYP/6-311+G(d,p)水平上优化了反应通道各驻点的几何构型.在CCSD(T)/6-311+G(d,p)水平上计算了各物种的单点能量,并对总能量进行了校正.计算表明,单重态CH2与CH2CO的C-H键可发生插入反应,与C=C、C=O可发生加成反应,存在三条反应通道,产物为CO和C2H4,从能量变化和反应速控步骤能垒两方面考虑,反应II更容易发生.对反应通道中的关键点进行了自然键轨道及电子密度拓扑分析.三重态CH2与CH2CO的反应存在三条反应通道,一条是与C-H键的插入反应,另一条是三重态CH2与C=C发生加成反应,产物为CO和三重态C2H4,通道II势垒较低,更容易发生.最后一条涉及双自由基的反应活化能最大,最难发生.  相似文献   

15.
用量子化学密度泛函方法,在B3LYP/6-31G*水平下研究了叔丁基自由基(CH3)3C和NO2气体的反应机理.研究表明,该反应是在单、三态势能面上的多通道反应.不同反应通道的产物不同,单态下反应更容易发生.常温下对于一个敞开体系(例如在大气当中),(CH3)3C自由基和NO2作用主要生成比较稳定的化合物(CH3)3CONO和(CH3)3CNO2.这对于消除大气污染起到一定的作用.  相似文献   

16.
IntroductionThemethoxyradical (CH3O)isanimportantinter mediateinthephotochemicaloxidationofhydrocarbonsintheatmosphere ,1 3andplaysasignificantroleintrans formingnitricoxidetonitrogendioxide .4 Similarly ,thereactionmechanismsofhydroxylandcarbonmonoxide5,6ando…  相似文献   

17.
赵红梅  刘鲲  孙成科  李宗和 《化学学报》2004,62(10):935-939
利用B3LYP方法,在6-31 G^ 基组下研究了在SiO2存在下的CH3ONO→CH3O NO解离反应.计算了全优化下的解离反应,以及固定SiO2的键长和键角做部分优化下的解离反应.在反应中SiO2与CH3ONO相接近,O-N键逐渐伸长,生成复合物,放出热量,进一步促进了CH3ONO中NO的解离.  相似文献   

18.
The stabling function of the NO to the (CH3)3CO · radical has been theoretically investigated. Density functional theory (DFT) calculations are performed to optimize the geometries of relevant species. The single‐point energy is evaluated at CCSD(T)/6‐31++G** level. Three reaction channels of (CH3)3CO · + NO in the singlet state are considered. The calculations indicate that NO is a stable reagent of active radical (CH3)3CO. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

19.
Peptides and proteins may contain post-translationally modified phosphorylated amino acid residues, in particular phosphorylated serine (pSer), threonine (pThr) and tyrosine (pTyr). Following earlier work by Lehmann et al., the [M-H]- anions of peptides containing pSer and pThr functionality show loss of the elements of H3PO4. This process, illustrated for Ser (and using a model system), is CH3CONH-C(CH2OPO3H2)CONHCH(3) --> [CH3CONHC(==CH2)CONHCH3 (-OPO3H2)] (a) --> [CH3CONHC(==CH2)CONHCH3-H]- + H3PO4, a process endothermic by 83 kJ mol(-1) at the MP2/6-31++G(d,p)//HF/6-31++G(d,p) level of theory. In addition, intermediate (a) may decompose to yield CH3CONHC(==CH2)CONHCH3 + H2PO4 - in a process exothermic by 3 kJ mol(-1). The barrier to the transition state for these two processes is 49 kJ mol(-1). Characteristic cleavages of pSer and pThr are more energetically favourable than the negative ion backbone cleavages of peptides described previously. In contrast, loss of HPO3 from [M-H]- is characteristic of pTyr. The cleavage [NH2CH(CH2-C6H4-OPO3H-)CO2H] --> [NH2C(CH2-C6H4-O-)CO2H (HPO3)] (b) --> NH2CH(CH2-C6H4-O-)CO2H + HPO3 is endothermic by 318 kJ mol(-1) at the HF/6-31+G(d)//AM1 level of theory. In addition, intermediate (b) also yields NH2CH(CH2-C6H4-OH)CO2H + PO3 - (reaction endothermic by 137 kJ mol(-1)). The two negative ion cleavages of pTyr have a barrier to the transition state of 198 kJ mol(-1) (at the HF/6-31+G(d)//AM1 level of theory) comparable with those already reported for negative ion backbone cleavages.  相似文献   

20.
The complex doublet potential energy surface of the CH(2)NO(2) system is investigated at the B3LYP/6-31G(d,p) and QCISD(T)/6-311G(d,p) (single-point) levels to explore the possible reaction mechanism of the triplet CH(2) radical with NO(2). Forty minimum isomers and 92 transition states are located. For the most relevant reaction pathways, the high-level QCISD(T)/6-311 + G(2df,2p) calculations are performed at the B3LYP/6-31G(d,p) geometries to accurately determine the energetics. It is found that the top attack of the (3)CH(2) radical at the N-atom of NO(2) first forms the branched open-chain H(2)CNO(2) a with no barrier followed by ring closure to give the three-membered ring isomer cC(H(2))ON-O b that will almost barrierlessly dissociate to product P(1) H(2)CO + NO. The lesser followed competitive channel is the 1,3-H-shift of a to isomer HCN(O)OH c, which will take subsequent cis-trans conversion and dissociation to P(2) OH + HCNO. The direct O-extrusion of a to product P(3) (3)O + H(2)CNO is even much less feasible. Because the intermediates and transition states involved in the above three channels are all lower than the reactants in energy, the title reaction is expected to be rapid, as is consistent with the measured large rate constant at room temperature. Formation of the other very low-lying dissociation products such as NH(2) + CO(2), OH + HNCO and H(2)O + NCO seems unlikely due to kinetic hindrance. Moreover, the (3)CH(2) attack at the end-O of NO(2) is a barrier-consumed process, and thus may only be of significance at very high temperatures. The reaction of the singlet CH(2) with NO(2) is also briefly discussed. Our calculated results may assist in future laboratory identification of the products of the title reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号