首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
基于Roe格式的可压与不可压流的统一计算方法   总被引:3,自引:0,他引:3  
摘要:以Navier-Stokes方程为基础,基于有限体积的时间推进的预处理技术.提出了一个可以用来求解可压与不可压流场的统一的计算方法,原始变量选用压力、速度与温度,通过矩阵变换与重构,使得对流项系数矩阵在可压与小可压条件下都不会奇异.将可压与不可压流场的计算方法统一起来。采用Roe格式计算对流通量,采用中心差分格式计算扩散通量.算例表明,该方法可以进行高Mach数、中等Mach数、低Mach数及不可压流场的计算。由于采用了Roe格式,该方法还可以捕获不连续流场的间断面。  相似文献   

2.
A. Meister 《PAMM》2002,1(1):526-529
The results of a formal asymptotic low Mach number analysis [5, 6] of the Euler equations of gas dynamics are used to extend the validity of a numerical method from the simulation of compressible inviscid flow fields to the low Mach number regime. Although, different strategies are applicable [7, 8, 5, 9] in this context we focus our view to a preconditioning technique recently proposed by Guillard and Viozat [16]. We present a finite volume approximation of the governing equations using a Lax‐Friedrichs scheme whereby a preconditioning of the incorporated numerical dissipation is employed. A discrete asymptotic analysis proves the validity of the scheme in the low Mach number regime.  相似文献   

3.
In [43] a finite volume method for reliable simulations of inviscid fluid flows at high as well as low Mach numbers based on a preconditioning technique proposed by Guillard and Viozat [14] is presented. In this paper we describe an extension of the numerical scheme for computing solutions of the Euler and Navier-Stokes equations. At first we show the high resolution properties, accuracy and robustness of the finite volume scheme in the context of a wide range of complicated transonic and supersonic test cases whereby both inviscid and viscous flow fields are considered. Thereafter, the validity of the method in the low Mach number regime is proven by means of an asymptotic analysis as well as numerical simulations. Whereas in [43] the asymptotic analysis of the scheme is focused on the behaviour of the continuous and discrete pressure distribution for inviscid low speed simulations we prove both the physical sensible discrete pressure field for viscous low Mach number flows and the divergence free condition of the discrete velocity field in the limit of a vanishing Mach number with respect to the simulation of inviscid fluid flow.  相似文献   

4.
In [43] a finite volume method for reliable simulations of inviscid fluid flows at high as well as low Mach numbers based on a preconditioning technique proposed by Guillard and Viozat [14] is presented. In this paper we describe an extension of the numerical scheme for computing solutions of the Euler and Navier-Stokes equations. At first we show the high resolution properties, accuracy and robustness of the finite volume scheme in the context of a wide range of complicated transonic and supersonic test cases whereby both inviscid and viscous flow fields are considered. Thereafter, the validity of the method in the low Mach number regime is proven by means of an asymptotic analysis as well as numerical simulations. Whereas in [43] the asymptotic analysis of the scheme is focused on the behaviour of the continuous and discrete pressure distribution for inviscid low speed simulations we prove both the physical sensible discrete pressure field for viscous low Mach number flows and the divergence free condition of the discrete velocity field in the limit of a vanishing Mach number with respect to the simulation of inviscid fluid flow.  相似文献   

5.
We describe two-phase compressible flows by a hyperbolic six-equation single-velocity two-phase flow model with stiff mechanical relaxation. In particular, we are interested in the simulation of liquid-gas mixtures such as cavitating flows. The model equations are numerically approximated via a fractional step algorithm, which alternates between the solution of the homogeneous hyperbolic portion of the system through Godunov-type finite volume schemes, and the solution of a system of ordinary differential equations that takes into account the pressure relaxation terms. When used in this algorithm, classical schemes such as Roe’s or HLLC prove to be very efficient to simulate the dynamics of transonic and supersonic flows. Unfortunately, these methods suffer from the well known difficulties of loss of accuracy and efficiency for low Mach number regimes encountered by upwind finite volume discretizations. This issue is particularly critical for liquid-gasmixtures due to the large and rapid variation in the flow of the acoustic impedance. To cure the problem of loss of accuracy at low Mach number, in this work we apply to our original Roe-type scheme for the two-phase flow model the Turkel’s preconditioning technique studied by Guillard–Viozat [Computers & Fluids, 28, 1999] for the Roe’s scheme for the classical Euler equations.We present numerical results for a two-dimensional liquid-gas channel flow test that show the effectiveness of the resulting Roe-Turkel method for the two-phase system.  相似文献   

6.
低Mach数流动中,基于可压缩流动的数值模拟算法存在严重的刚性问题,预处理方法可以有效地解决这一问题,但其计算结果不稳定.基于原有的预处理Roe格式,引入可调节参数,得到一种新的低耗散格式.该格式可以减弱边界层以及极低速区域的过度耗散,使得整个流场计算稳定.低Mach数、低Reynolds数定常圆柱绕流和低Mach数、高Reynolds数翼型(NACA0012和S809)绕流3个验证算例表明,带可调节参数的低耗散预处理方法正确可靠,是低速流动数值模拟的有效方法.  相似文献   

7.
A relaxation system based on a Lattice-Boltzmann type discrete velocity model is considered in the low Mach number limit. A third order relaxation scheme is developed working uniformly for all ranges of the mean free path and Mach number. In the incompressible Navier-Stokes limit the scheme reduces to an explicit high order finite difference scheme for the incompressible Navier-Stokes equations based on nonoscillatory upwind discretization. Numerical results and comparisons with other approaches are presented for several test cases in one and two space dimensions.

  相似文献   


8.
An explicit two-level in time and spatially symmetric finite-difference scheme approximating the 1D quasi-gasdynamic system of equations is studied. The scheme is linearized about a constant solution, and new necessary and sufficient conditions for the L2-dissipativity of solutions to the Cauchy problem are derived, including, for the first time, the case of a nonzero background velocity and depending on the Mach number. It is shown that the condition on the Courant number can be made independent of the Mach number. The results provide a substantial development of the well-known stability analysis of the linearized Lax–Wendroff scheme.  相似文献   

9.
R. Heinrich 《PAMM》2002,1(1):337-338
The present paper describes the implementation of a preconditioning method in the hybrid DLR–TAU+–code and its application to nearly incompressible flows. The method is designed in order to get an efficient and accurate solution even for very low Mach numbers using a time stepping scheme for the solution of the compressible Navier–Stokes equations. The algorithm is based on the work of Choi and Merkle. The numerical results obtained for inviscid and viscous flows indicate, that for Mach numbers lower than 0.1 the accuracy as well as the convergence properties are almost independent of the fluid speed, like for incompressible codes.  相似文献   

10.
The convergence of many iterative procedures, in particular that of the conjugate gradient method, strongly depends on the condition number of the linear system to be solved. In cases with a large condition number, therefore, preconditioning is often used to transform the system into an equivalent one, with a smaller condition number and therefore faster convergence. For Poisson-like difference equations with flat grids, the vertical part of the difference operator is dominant and tridiagonal and can be used for preconditioning. Such a procedure has been applied to incompressible atmospheric flows to preserve incompressibility, where a system of Poisson-like difference equations is to be solved for the dynamic pressure part. In the mesoscale atmospheric model KAMM, convergence has been speeded up considerably by tridiagonal preconditioning, even though the system matrix is not symmetric and, hence, the biconjugate gradient method must be used.  相似文献   

11.
The convergence of many iterative procedures, in particular that of the conjugate gradient method, strongly depends on the condition number of the linear system to be solved. In cases with a large condition number, therefore, preconditioning is often used to transform the system into an equivalent one, with a smaller condition number and therefore faster convergence. For Poisson-like difference equations with flat grids, the vertical part of the difference operator is dominant and tridiagonal and can be used for preconditioning. Such a procedure has been applied to incompressible atmospheric flows to preserve incompressibility, where a system of Poisson-like difference equations is to be solved for the dynamic pressure part. In the mesoscale atmospheric model KAMM, convergence has been speeded up considerably by tridiagonal preconditioning, even though the system matrix is not symmetric and, hence, the biconjugate gradient method must be used.  相似文献   

12.
Felix Rieper 《PAMM》2007,7(1):2100067-2100068
Upwind schemes for the Euler equations face three kinds of problems in the low Mach number regime: The stiffness due to the presence of fast acoustic and slow entropy and shear waves can be overcome – at least for steady problems – by preconditioning the physical equations, see for example [1, 2]. Secondly, the 𝒪(M2)-pressure variations get lost in the O(1)-global pressure due to finite precision arithmetics. This cancellation problem was dealt with in [3]. The third problem originates in the numerical viscosity of the upwind schemes and is – in the author's view of the matter – not fully understood to date. Asymptotic analyses of the upwind schemes such as [4] suggest that the pressure field will completely degenerate, producing variations of the wrong order of magnitude. Our numerical andanalytical results give a more precise picture of the problem and are – at least in parts – contradicting the established view. We will prove in this paper that complete Riemann solvers such as Roe's behave completely different to incomplete Riemann solvers such as HLL in the low Mach number regime. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
This paper investigates the benefits of local preconditioning for the compressible Euler equations to predict nearly incompressible fluid flow. The AUSMDV(P) upwind method by Edwards and Liou is employed to maintain the spatial accuracy of the method for low Mach numbers. The results indicate excellent solution quality and fast convergence to steady state for compressible as well as nearly incompressible fluid flow. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We consider a mathematical model for thermal analysis in a 3D N‐carrier system with Neumann boundary conditions, which extends the concept of the well‐known parabolic two‐step model for micro heat transfer. To solve numerically the complex system, we first reduce 3D equations in the model to a succession of 1D equations by using the local one‐dimensional (LOD) method. The obtained 1D equations are then solved using a fourth‐order compact finite difference scheme for the interior points and a second‐order combined compact finite difference scheme for the points next to the boundary, so that the Neumann boundary condition can be applied directly without discretizing. By using matrix analysis, the compact LOD scheme is shown to be unconditionally stable. The accuracy of the solution is tested using two numerical examples. Results show that the solutions obtained by the compact LOD finite difference scheme are more accurate than those obtained by a Crank‐Nicholson LOD scheme, and the convergence rate with respect to spatial variables is about 2.6. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

15.
The low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data is rigorously justified in the whole space R3R3. First, the uniform-in-Mach-number estimates of the solutions in a Sobolev space are established on a finite time interval independent of the Mach number. Then the low Mach number limit is proved by combining these uniform estimate with a theorem due to Métivier and Schochet (2001) [45] for the Euler equations that gives the local energy decay of the acoustic wave equations.  相似文献   

16.
A finite volume method for inviscid unsteady flows at low Mach numbers is studied. The method uses a preconditioning of the dissipation term within the numerical flux function only. It can be observed by numerical experiments, as well as by analysis, that the preconditioned scheme yields a physically corrected pressure distribution and combined with an explicit time integrator it is stable if the time step Δt satisfies the requirement to be 𝒪(M 2) as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to Δt = 𝒪(M ),M → 0, though producing unphysical results. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In many cases, multiphase flows are simulated on the basis of the incompressible Navier–Stokes equations. This assumption is valid as long as the density changes in the gas phase can be neglected. Yet, for certain technical applications such as fuel injection, this is no longer the case, and at least the gaseous phase has to be treated as a compressible fluid. In this paper, we consider the coupling of a compressible flow region to an incompressible one based on a splitting of the pressure into a thermodynamic and a hydrodynamic part. The compressible Euler equations are then connected to the Mach number zero limit equations in the other region. These limit equations can be solved analytically in one space dimension that allows to couple them to the solution of a half‐Riemann problem on the compressible side with the help of velocity and pressure jump conditions across the interface. At the interface location, the flux terms for the compressible flow solver are provided by the coupling algorithms. The coupling is demonstrated in a one‐dimensional framework by use of a discontinuous Galerkin scheme for compressible two‐phase flow with a sharp interface tracking via a ghost‐fluid type method. The coupling schemes are applied to two generic test cases. The computational results are compared with those obtained with the fully compressible two‐phase flow solver, where the Mach number zero limit is approached by a weakly compressible fluid. For all cases, we obtain a very good agreement between the coupling approaches and the fully compressible solver. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A new numerical procedure which considers a modification to the artificial acoustic stiffness correction method (AASCM) is here presented, to perform simulations of low Mach number flows with the compressible Navier–Stokes equations. An extra term is added to the energy fluxes instead of using an energy source correction term as in the original model. This new scheme re-scales the speed of sound to values similar to the flow velocity, enabling the use of larger time steps and leading to a more stable numerical method. The new method is validated performing Large Eddy Simulations on test problems. The effect of a crucial numerical parameter alpha is evaluated as well as the robustness of the method to variations of the Mach number. Numerical results are compared to the existing experimental data showing that the new method achieves good agreement increasing the time-step, and therefore accelerating the computation for low-Mach convective flows.  相似文献   

19.
Within the research into some geothermal modes, a 3D heat transfer process was described by a first-order system of differential equations (in terms of “temperature-heat-flow”). This system was solved by an explicit scheme for the mixed finite element spatial approximations based on the Raviart-Thomas degrees of freedom. In this paper, several algorithms based on the splitting technique for the vector heat-flow equation are proposed. Some comparison results of accuracy of the algorithms proposed are presented.  相似文献   

20.
In this paper, we consider several finite-difference approximations for the three-dimensional biharmonic equation. A symbolic algebra package is utilized to derive a family of finite-difference approximations for the biharmonic equation on a 27 point compact stencil. The unknown solution and its first derivatives are carried as unknowns at selected grid points. This formulation allows us to incorporate the Dirichlet boundary conditions automatically and there is no need to define special formulas near the boundaries, as is the case with the standard discretizations of biharmonic equations. We exhibit the standard second-order, finite-difference approximation that requires 25 grid points. We also exhibit two compact formulations of the 3D biharmonic equations; these compact formulas are defined on a 27 point cubic grid. The fourth-order approximations are used to solve a set of test problems and produce high accuracy numerical solutions. The system of linear equations is solved using a variety of iterative methods. We employ multigrid and preconditioned Krylov iterative methods to solve the system of equations. Test results from two test problems are reported. In these experiments, the multigrid method gives excellent results. The multigrid preconditioning also gives good results using Krylov methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号