首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In [43] a finite volume method for reliable simulations of inviscid fluid flows at high as well as low Mach numbers based on a preconditioning technique proposed by Guillard and Viozat [14] is presented. In this paper we describe an extension of the numerical scheme for computing solutions of the Euler and Navier-Stokes equations. At first we show the high resolution properties, accuracy and robustness of the finite volume scheme in the context of a wide range of complicated transonic and supersonic test cases whereby both inviscid and viscous flow fields are considered. Thereafter, the validity of the method in the low Mach number regime is proven by means of an asymptotic analysis as well as numerical simulations. Whereas in [43] the asymptotic analysis of the scheme is focused on the behaviour of the continuous and discrete pressure distribution for inviscid low speed simulations we prove both the physical sensible discrete pressure field for viscous low Mach number flows and the divergence free condition of the discrete velocity field in the limit of a vanishing Mach number with respect to the simulation of inviscid fluid flow.  相似文献   

2.
A. Meister 《PAMM》2002,1(1):526-529
The results of a formal asymptotic low Mach number analysis [5, 6] of the Euler equations of gas dynamics are used to extend the validity of a numerical method from the simulation of compressible inviscid flow fields to the low Mach number regime. Although, different strategies are applicable [7, 8, 5, 9] in this context we focus our view to a preconditioning technique recently proposed by Guillard and Viozat [16]. We present a finite volume approximation of the governing equations using a Lax‐Friedrichs scheme whereby a preconditioning of the incorporated numerical dissipation is employed. A discrete asymptotic analysis proves the validity of the scheme in the low Mach number regime.  相似文献   

3.
The work presents two numerical solutions of compressible flows problems with high and very low Mach numbers. Both problems are numerically solved by finite volume method and the explicit MacCormack scheme using a grid of quadrilateral cells. Moved grid of quadrilateral cells is considered in the form of conservation laws using Arbitrary Lagrangian–Eulerian method. In the first case, inviscid transonic flow through cascade DCA 8% is presented and the numerical results are compared to experimental data. The second case, numerical solution of unsteady viscous flow in the channel for upstream Mach number M=0.012 and frequency of the wall motions 100 Hz is presented. The unsteady case can represent a simplified model of airflow coming from the trachea, through the glottal region with periodically vibrating vocal folds to the human vocal tract. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We describe two-phase compressible flows by a hyperbolic six-equation single-velocity two-phase flow model with stiff mechanical relaxation. In particular, we are interested in the simulation of liquid-gas mixtures such as cavitating flows. The model equations are numerically approximated via a fractional step algorithm, which alternates between the solution of the homogeneous hyperbolic portion of the system through Godunov-type finite volume schemes, and the solution of a system of ordinary differential equations that takes into account the pressure relaxation terms. When used in this algorithm, classical schemes such as Roe’s or HLLC prove to be very efficient to simulate the dynamics of transonic and supersonic flows. Unfortunately, these methods suffer from the well known difficulties of loss of accuracy and efficiency for low Mach number regimes encountered by upwind finite volume discretizations. This issue is particularly critical for liquid-gasmixtures due to the large and rapid variation in the flow of the acoustic impedance. To cure the problem of loss of accuracy at low Mach number, in this work we apply to our original Roe-type scheme for the two-phase flow model the Turkel’s preconditioning technique studied by Guillard–Viozat [Computers & Fluids, 28, 1999] for the Roe’s scheme for the classical Euler equations.We present numerical results for a two-dimensional liquid-gas channel flow test that show the effectiveness of the resulting Roe-Turkel method for the two-phase system.  相似文献   

5.
R. Heinrich 《PAMM》2002,1(1):337-338
The present paper describes the implementation of a preconditioning method in the hybrid DLR–TAU+–code and its application to nearly incompressible flows. The method is designed in order to get an efficient and accurate solution even for very low Mach numbers using a time stepping scheme for the solution of the compressible Navier–Stokes equations. The algorithm is based on the work of Choi and Merkle. The numerical results obtained for inviscid and viscous flows indicate, that for Mach numbers lower than 0.1 the accuracy as well as the convergence properties are almost independent of the fluid speed, like for incompressible codes.  相似文献   

6.
基于Roe格式的可压与不可压流的统一计算方法   总被引:3,自引:0,他引:3  
摘要:以Navier-Stokes方程为基础,基于有限体积的时间推进的预处理技术.提出了一个可以用来求解可压与不可压流场的统一的计算方法,原始变量选用压力、速度与温度,通过矩阵变换与重构,使得对流项系数矩阵在可压与小可压条件下都不会奇异.将可压与不可压流场的计算方法统一起来。采用Roe格式计算对流通量,采用中心差分格式计算扩散通量.算例表明,该方法可以进行高Mach数、中等Mach数、低Mach数及不可压流场的计算。由于采用了Roe格式,该方法还可以捕获不连续流场的间断面。  相似文献   

7.
低Mach数流动中,基于可压缩流动的数值模拟算法存在严重的刚性问题,预处理方法可以有效地解决这一问题,但其计算结果不稳定.基于原有的预处理Roe格式,引入可调节参数,得到一种新的低耗散格式.该格式可以减弱边界层以及极低速区域的过度耗散,使得整个流场计算稳定.低Mach数、低Reynolds数定常圆柱绕流和低Mach数、高Reynolds数翼型(NACA0012和S809)绕流3个验证算例表明,带可调节参数的低耗散预处理方法正确可靠,是低速流动数值模拟的有效方法.  相似文献   

8.
A finite volume method for inviscid unsteady flows at low Mach numbers is studied. The method uses a preconditioning of the dissipation term within the numerical flux function only. It can be observed by numerical experiments, as well as by analysis, that the preconditioned scheme yields a physically corrected pressure distribution and combined with an explicit time integrator it is stable if the time step Δt satisfies the requirement to be 𝒪(M 2) as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to Δt = 𝒪(M ),M → 0, though producing unphysical results. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Given any two-dimensional and incompressible flow describedby a set of linear partial differential equations, a methodis presented for determining the solution for the dependentvariables (velocity, pressure, etc.). The method is then usedto investigate the following magnetohydrodynamic flows. (a) The flow of an irrotational and inviscid fluid. (b) The flow of a viscous fluid. (c) The flow of an electrically conducting, inviscid fluid inthe presence of a magnetic field aligned with the flow at infinity. (d) The flow of an electrically conducting, viscous fluid inthe presence of a magnetic field having arbitrary direction.  相似文献   

10.
M. Trenker 《PAMM》2002,1(1):266-267
Classical analytic models for the theoretical behavior of transonic flows have guided the development of numerical simulation of practically relevant flows. But while operational successfully for the usual applications (conventional configuration high speed aerodynamics), CFD codes fail frequently once detailed information regarding even just inviscid flow structure for freestream Mach number close to unity is needed. In this contribution shock configurations are computed verifying analytical results for both the far field behavior of detached bow waves and the local structure of attaching bow waves. The first example is challenging the ability of a CFD code (DLR‐τ) to adapt its unstructured grid to a weak bow wave detached from the airfoil. Known analytical results for the asymptotic bow wave behavior at decreased Mach number → 1 serve for judging numerical results where practical case studies neither from CFD nor from experiment are available. In the second example the behavior of a bow wave attaching to a wedge for increased Mach number is studied, with grid adaption allowing for a verification of both the singular analytical model when attachment takes place and also the transition to plain supersonic wedge flow.  相似文献   

11.
It has been shown in our paper [1] that there is a wide class of 3D motions of incompressible viscous fluid which can be described by one scalar function dabbed the quasi‐potential. This class of fluid flows is characterized by three‐component velocity field having two‐component vorticity field; both these fields can depend of all three spatial variables and time, in general. Governing equations for the quasi‐potential have been derived and simple illustrative example of 3D flow has been presented. Here, we derive the Bernoulli integral for that class of flows and compare it against the known Bernoulli integrals for the potential flows or 2D stationary vortical flows of inviscid fluid. We show that the Bernoulli integral for this class of fluid motion possesses unusual features: it is valid for the vortical nonstationary motions of a viscous incompressible fluid. We present a new very nontrivial analytical example of 3D flow with two‐component vorticity which hardly can be obtained by any of known methods. In the last section, we suggest a generalization of the developed concept which allows one to describe a certain class of 3D flows with the 3D vorticity.  相似文献   

12.
Alexandru Dumitrache 《PAMM》2004,4(1):560-561
An interaction viscous‐inviscid method for efficiently computing steady and unsteady viscous flows is presented. The inviscid domain is modeled using a finite element discretization of the full potential equation. The viscous region is modeled using a finite difference boundary layer technique. The two regions are simultaneously coupled using the transpiration approach. A time linearization technique is applied to this interactive method. For unsteady flows, the fluid is assumed to be composed of a mean or steady flow plus a harmonically varying small unsteady disturbance. Numerically exact nonreflecting boundary conditions are used for the far field conditions. Results for some steady and unsteady, laminar and turbulent flow problems are compared to linearized Navier‐Stokes or time‐marching boundary layer methods. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We address the question of whether a singularity in a three-dimensional incompressible inviscid fluid flow can occur in finite time. Analytical considerations and numerical simulations suggest high-symmetry flows as promising candidates for finite-time blowup. Utilizing Lagrangian and geometric non-blowup criteria, we present numerical evidence against the formation of a finite-time singularity for the high-symmetry vortex dodecapole initial condition. We use data obtained from high-resolution adaptively refined numerical simulations and inject Lagrangian tracer particles to monitor geometric properties of vortex line segments. We then verify the assumptions made in the analytical non-blowup criteria introduced by Deng et al. [Commun. PDE 31 (2006)] connecting vortex line geometry (curvature, spreading) to velocity increase, to rule out singular behavior.  相似文献   

14.
This work is devoted to the clarification of the viscous compressible modes particularly leading to absolute instability of the three-dimensional generalized Von Karman's boundary-layer flow due to a rotating disk. The infinitesimally small perturbations are superimposed onto the basic Von Karman's flow to achieve linearized viscous compressible stability equations. A numerical treatment of these equations is then undertaken to search for the modes causing absolute instability within the principle of Briggs–Bers pinching. Having verified the earlier incompressible and inviscid compressible results of [ 1–3 ], and also confirming the correct match of the viscous modes onto the inviscid ones in the large Reynolds number limit, the influences of the compressibility on the subject matter are investigated taking into consideration both the wall insulation and heat transfer. Results clearly demonstrate that compressibility, as the Mach number increases, acts in favor of stabilizing the boundary-layer flow, especially in the inviscid limit, as far as the absolute instability is concerned, although wall heating and insulation greatly enhances the viscous absolutely unstable modes (even more dramatic in the case of wall insulation) by lowering down the critical Reynolds number for the onset of instability, unlike the wall cooling.  相似文献   

15.
M. Scholle  A. Haas 《PAMM》2010,10(1):483-484
As wellknown, Bernoulli's equation is obtained as the first integral of Euler's equations in the absence of vorticity. Even in case of non-vanishing vorticity, a first integral from Euler's equations is obtained by using the so called Clebsch transformation [1] for inviscid flows. In contrast to this, a generalisation of this procedure towards viscous flows has not been established so far. In the present paper a first integral of Navier-Stokes equations is constructed in the case of two-dimensional flow by making use of an alternative representation of the fields in terms of complex coordinates and introducing a potential representation for the pressure. The associated boundary conditions are also considered. The first integral is a suitable tool for the development of new analytical methods and numerical codes in fluid dynamics. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Two-dimensional mathematical models for gaseous H2/O2 reactive flows are solved for two geometries: a conical and a parabolic one. Five different physical models are studied: two one-species and three multi-species models (frozen, equilibrium and non-equilibrium flows). In the mathematical model, temperature is used as unknown in the energy equation and velocity is obtained for all speed flows. For all analyses, a non-orthogonal finite volume code was implemented, taking into account first (UDS) and second (CDS) order interpolation schemes and co-located grid arrangement. Model predictions of the pressure distribution and Mach number in the nozzle with a conical geometry, calculated using a CDS scheme, were found to agree well with experimental results. For both geometries, numerical results for apparent orders of convergence agreed well with the asymptotic (expected) ones for one-species flows. Some other analyses were provided for mixture of gases flows; in this case, for frozen flow, the apparent order values tend to the asymptotic ones in all cases; for local equilibrium flow, the use of CDS degenerated the apparent order to unity; this fact can be associated to the use of UDS interpolation scheme in the source term of the energy equation. Numerical solutions, including their error estimates, are provided for UDS and CDS schemes. Their analysis shows that global variables of interest (such as thrust and specific impulse) are less affected by the chosen physical model than are local variables of interest (such as the temperature at the symmetry line).  相似文献   

17.
The non-stationary conduction–convection problem including the velocity vector field and the pressure field as well as the temperature field is studied with a finite volume element (FVE) method. A fully discrete FVE formulation and the error estimates between the fully discrete FVE solutions and the accuracy solution are provided. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the FVE method is feasible and efficient for finding the numerical solutions of the non-stationary conduction–convection problem and is one of the most effective numerical methods by comparing the results of the numerical simulations of the FVE formulation with those of the numerical simulations of the finite element method and the finite difference scheme for the non-stationary conduction–convection problem.  相似文献   

18.
We introduce a numerical method for incipient sediment transport past bedforms. The approach is based on the discrete element method (DEM) [1], simulating the micro-mechanics of the landform as an aggregate of rigid spheres interacting by contact and friction. A continuous finite element approximation [2] predicts the boundary shear stress field due to the fluid flow, resulting in drag and lift forces acting over the particles. Numerical experiments verify the method by reproducing results by Shields [3] and other authors for the initiation of motion of a single grain. A series of experiments for sediments with varying compacity and constituting piles yields enhanced relationships between threshold shear stress and friction Reynolds number, to define incipient sediment transport criterion for flows over small-scale bed morphologies.  相似文献   

19.
Robert Artebrant 《PAMM》2007,7(1):2020077-2020078
Violation of the divergence constraint on the magnetic flux density in magnetohydrodynamical (MHD) simulations leads to stability problems. It is therefore of great importance to numerically respect this intrinsic constraint. Since the divergence preservation is a local phenomenon inherent in the MHD-system it is appealing to mimic this property numerically by a locally divergence-preserving scheme. A common numerical technique for simulation of the MHD-system of conservation laws is the finite volume (FV) method. In [SISC 26 2005 pp. 1166] a local procedure to redistribute the numerical fluxes in a FV-scheme so that a discrete divergence operator vanishes was presented. This procedure stabilizes the base scheme and respects the accuracy to the second order level. The present note describes a development of the above procedure that complies with the finite volume framework, preserves a fourth order discrete divergence operator locally and retains the accuracy of a generic semi-discrete finite volume scheme up to fourth order. The redistribution of the numerical magnetic field fluxes is formulated in a standard conservative setting, making it trivial to implement the divergence-preserving modification in an existing FV-scheme; see [JCP 227 2008 pp.3405] for the details. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
本文采用有限体积法结合高分辨率的TVD(总变差不增)格式,对平面激波遇矩形、三角形障碍物问题进行数值模拟,采用Schwarz变换生成计算网格,可使网格线在尖角处较密集且网格设置符合流场物理特性。初始阶段的流场复杂且粘性影响的尺度很小,模型中可以忽略流体的粘性。计算结果描述了平面无粘可压流中,由于弓形激波后熵与温度的不均匀性引起的尖角下游不定常集中涡的产生过程。数值计算与应我们要求所做激波管实验的光测结果相符合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号