首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 590 毫秒
1.
A finite volume method for inviscid unsteady flows at low Mach numbers is studied. The method uses a preconditioning of the dissipation term within the numerical flux function only. It can be observed by numerical experiments that the preconditioned scheme combined with an explicit time integrator is unstable if the time step Δt does not satisfy the requirement to be as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to , M → 0, though producing unphysical results. A comprehensive mathematical substantiation of this numerical phenomenon by means of a von Neumann stability analysis is presented, which reveals that in contrast to the standard approach, the dissipation matrix of the preconditioned numerical flux function possesses an eigenvalue growing like M–2 as M tends to zero, thus causing the diminishment of the stability region of the explicit scheme. The theoretical results are afterwards confirmed by numerical experiments. AMS subject classification (2000) 35L65, 35C20, 76G25  相似文献   

2.
Felix Rieper 《PAMM》2007,7(1):2100067-2100068
Upwind schemes for the Euler equations face three kinds of problems in the low Mach number regime: The stiffness due to the presence of fast acoustic and slow entropy and shear waves can be overcome – at least for steady problems – by preconditioning the physical equations, see for example [1, 2]. Secondly, the 𝒪(M2)-pressure variations get lost in the O(1)-global pressure due to finite precision arithmetics. This cancellation problem was dealt with in [3]. The third problem originates in the numerical viscosity of the upwind schemes and is – in the author's view of the matter – not fully understood to date. Asymptotic analyses of the upwind schemes such as [4] suggest that the pressure field will completely degenerate, producing variations of the wrong order of magnitude. Our numerical andanalytical results give a more precise picture of the problem and are – at least in parts – contradicting the established view. We will prove in this paper that complete Riemann solvers such as Roe's behave completely different to incomplete Riemann solvers such as HLL in the low Mach number regime. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The problem of inferring a finite binary sequence w *∈{−1, 1}n is considered. It is supposed that at epochs t=1, 2,…, the learner is provided with random half‐space data in the form of finite binary sequences u (t)∈{−1, 1}n which have positive inner‐product with w *. The goal of the learner is to determine the underlying sequence w * in an efficient, on‐line fashion from the data { u (t), t≥1}. In this context, it is shown that the randomized, on‐line directed drift algorithm produces a sequence of hypotheses {w(t)∈{−1, 1}n, t≥1} which converges to w * in finite time with probability 1. It is shown that while the algorithm has a minimal space complexity of 2n bits of scratch memory, it has exponential time complexity with an expected mistake bound of order Ω(e0.139n). Batch incarnations of the algorithm are introduced which allow for massive improvements in running time with a relatively small cost in space (batch size). In particular, using a batch of 𝒪(n log n) examples at each update epoch reduces the expected mistake bound of the (batch) algorithm to 𝒪(n) (in an asynchronous bit update mode) and 𝒪(1) (in a synchronous bit update mode). The problem considered here is related to binary integer programming and to learning in a mathematical model of a neuron. ©1999 John Wiley & Sons, Inc. Random Struct. Alg., 14, 345–381 (1999)  相似文献   

4.
In this article we consider the spectral Galerkin method with the implicit/explicit Euler scheme for the two‐dimensional Navier–Stokes equations with the L2 initial data. Due to the poor smoothness of the solution on [0,1), we use the the spectral Galerkin method based on high‐dimensional spectral space HM and small time step Δt2 on this interval. While on [1,∞), we use the spectral Galerkin method based on low‐dimensional spectral space Hm(m = O(M1/2)) and large time step Δt. For the spectral Galerkin method, we provide the standard H2‐stability and the L2‐error analysis. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

5.
We consider a combination of the standard Galerkin method and the subspace decomposition methods for the numerical solution of the two‐dimensional time‐dependent incompressible Navier‐Stokes equations with nonsmooth initial data. Because of the poor smoothness of the solution near t = 0, we use the standard Galerkin method for time interval [0, 1] and the subspace decomposition method time interval [1, ∞). The subspace decomposition method is based on the solution into the sum of a low frequency component integrated using a small time step Δt and a high frequency integrated using a larger time step pΔt with p > 1. From the H1‐stability and L2‐error analysis, we show that the subspace decomposition method can yield a significant gain in computing time. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2009  相似文献   

6.
This work is devoted to parametric study on creep-fatigue endurance of the steel AISI type 316N(L) weldments defined as type 3 according to R5 Vol. 2/3 procedure at 550°C. The study is implemented using a novel direct method known as the Linear Matching Method (LMM) and based upon the creep-fatigue evaluation procedure considering time fraction rule for creep-damage assessment. Seven geometrical configurations of the weldment, which are characterised by individual values of a geometrical parameter ρ, are proposed. Parameter ρ, which represents different grades of TIG dressing, is a ratio between the radius of the fillet of the remelted metal on a weld toe and the thickness of welded plates. For each configuration, the total number of cycles to failure N* in creep-fatigue conditions is assessed numerically for different loading cases including normalised bending moment and dwell period Δt. The obtained set of N* is extrapolated by the analytic function dependent on , Δt and ρ. Proposed function for N* shows good agreement with numerical results obtained by the LMM. It is used for the identification of Fatigue Strength Reduction Factors (FSRFs) effected by creep and dependent on Δt and ρ. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The paper deals with the numerical approximation of the HUM control of the 2D wave equation. Most of the discrete models obtained with classical finite difference or finite element methods do not produce convergent sequences of discrete controls, as the mesh size h and the time step Δt go to zero. We introduce a family of fully-discrete schemes, nondispersive, stable under the condition \(\Delta t\leq h\slash\sqrt{2}\) and uniformly controllable with respect to h and Δt. These implicit schemes differ from the usual explicit one (obtained with leapfrog time approximation and five point spatial approximations) by the addition of terms proportional to h 2 and Δt 2. Numerical experiments for nonsmooth initial conditions on the unit square using a conjugate gradient algorithm indicate the excellent performance of the schemes.  相似文献   

8.
Under certain circumstances, solutions of the cylindrically symmetric nonlinear Schrödinger equation collapse to a singularity in a finite time. An asymptotic series for the solution near the singularity is derived here. At leading order, the central amplitude of the spike grows like[(log Δt)/Δt]1/2, where Δt is the time remaining to the appearance of the singularity.  相似文献   

9.
E. Cuesta 《PAMM》2007,7(1):1030203-1030204
In this paper we show adaptive time discretizations of a fractional integro–differential equation ∂αtu = Δu + f, where A is a linear operator in a complex Banach space X and ∂αt stands for the fractional time derivative, for 1 < α < 2. Some numerical illustrations are provided showing practical applications where the computational cost is one of drawbacks, e.g., some problems related to images processing. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Considering matrices obtained by the application of a five-point stencil on a 2D rectangular grid, we analyse a preconditioning method introduced by Axelsson and Eijkhout, and by Brand and Heinemann. In this method, one performs a (modified) incomplete factorization with respect to a so-called ‘repeated’ or ‘recursive’ red–black ordering of the unknowns while fill-in is accepted provided that the red unknowns in a same level remain uncoupled. Considering discrete second order elliptic PDEs with isotropic coefficients, we show that the condition number is bounded by 𝒪(n ½ log 2 (√(5) −1) ) where n is the total number of unknowns (½ log2(√(5) − 1) = 0.153), and thus, that the total arithmetic work for the solution is bounded by 𝒪(n1.077). Our condition number estimate, which turns out to be better than standard 𝒪(log2 n) estimates for any realistic problem size, is purely algebraic and holds in the presence of Neumann boundary conditions and/or discontinuities in the PDE coefficients. Numerical tests are reported, displaying the efficiency of the method and the relevance of our analysis. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a new numerical method for computing global stable manifolds and global stable sets of nonlinear discrete dynamical systems. For a given map f:ℝ d →ℝ d , the proposed method is capable of yielding large parts of stable manifolds and sets within a certain compact region M⊂ℝ d . The algorithm divides the region M in sets and uses an adaptive subdivision technique to approximate an outer covering of the manifolds. In contrast to similar approaches, the method requires neither the system’s inverse nor its Jacobian. Hence, it can also be applied to noninvertible and piecewise-smooth maps. The successful application of the method is illustrated by computation of one- and two-dimensional stable manifolds and global stable sets.  相似文献   

12.
In this paper, a fully discrete local discontinuous Galerkin method for a class of multi-term time fractional diffusion equations is proposed and analyzed. Using local discontinuous Galerkin method in spatial direction and classical L1 approximation in temporal direction, a fully discrete scheme is established. By choosing the numerical flux carefully, we prove that the method is unconditionally stable and convergent with order O(h k+1 + (Δt)2?α ), where k, h, and Δt are the degree of piecewise polynomial, the space, and time step sizes, respectively. Numerical examples are carried out to illustrate the effectiveness of the numerical scheme.  相似文献   

13.
A high‐accuracy numerical approach for a nonhomogeneous time‐fractional diffusion equation with Neumann and Dirichlet boundary conditions is described in this paper. The time‐fractional derivative is described in the sense of Riemann‐Liouville and discretized by the backward Euler scheme. A fourth‐order optimal cubic B‐spline collocation (OCBSC) method is used to discretize the space variable. The stability analysis with respect to time discretization is carried out, and it is shown that the method is unconditionally stable. Convergence analysis of the method is performed. Two numerical examples are considered to demonstrate the performance of the method and validate the theoretical results. It is shown that the proposed method is of order Ox4 + Δt2 ? α) convergence, where α ∈ (0,1) . Moreover, the impact of fractional‐order derivative on the solution profile is investigated. Numerical results obtained by the present method are compared with those obtained by the method based on standard cubic B‐spline collocation method. The CPU time for present numerical method and the method based on cubic B‐spline collocation method are provided.  相似文献   

14.
Numerical simulation of industrial processes involving viscoelastic liquids is often based on finite element methods on quadrilateral meshes. However, numerical analysis of these methods has so far been limited to triangular meshes. In this work, we consider quadrilateral meshes. We first study the approximation of the transport equation by a Galerkin discontinuous method and prove an 𝒪(hk+1/2) error estimates for the Qk finite element. Then we study a differential model for viscoelastic flow with unknowns u the velocity, p the pressure, and σ the viscoelastic part of the extra-stress tensor. The approximations are ((Q1)2 transforms of) Qk+1 continuous for u, Qk discontinuous for σ, and Pk discontinuous for p, with k ≥ 1. Upwinding for σ is obtained by the Galerkin discontinuous method. We show that an error estimate of order 𝒪(hk+1/2) is valid in the energy norm for the three unknowns. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 97–114, 1998  相似文献   

15.
In this work, numerical solution of nonlinear modified Burgers equation is obtained using an improvised collocation technique with cubic B‐spline as basis functions. In this technique, cubic B‐splines are forced to satisfy the interpolatory condition along with some specific end conditions. Crank–Nicolson scheme is used for temporal domain and improvised cubic B‐spline collocation method is used for spatial domain discretization. Quasilinearization process is followed to tackle the nonlinear term in the equation. Convergence of the technique is established to be of order O(h4 + Δt2) . Stability of the technique is examined using von‐Neumann analysis. L2 and L error norms are calculated and are compared with those available in existing works. Results are found to be better and the technique is computationally efficient, which is shown by calculating CPU time.  相似文献   

16.
We consider a family of fully discrete finite element schemes for solving a viscous wave equation, where the time integration is based on the Newmark method. A rigorous stability analysis based on the energy method is developed. Optimal error estimates in both time and space are obtained. For sufficiently smooth solutions, it is demonstrated that the maximal error in the L 2-norm over a finite time interval converges optimally as O(h p+1 + Δt s ), where p denotes the polynomial degree, s = 1 or 2, h the mesh size, and Δt the time step.  相似文献   

17.
We obtain the time dependent probabilities for the joint distribution of the number of arrivals and departures in [0,t] for theM/M ij/1 queue. This queue has the exponential service with parametersμ ij, depending on the types of the successive customers attended. We provide an intuitive interpretation of the solution and also present some numerical results, including time dependent event probabilities and queue length.  相似文献   

18.
We examine a model of traffic flow on a highway segment, where traffic can be impaired by random incidents (usually, collisions). Using analytical and numerical methods, we show the degree of sensitivity that the model exhibits to the distributions of service times (in the queueing model) and incident clearance times. Its sensitivity to the distribution of time until an incident is much less pronounced. Our analytical methods include an M/Gt/∞ analysis (Gt denotes a service process whose distribution changes with time) and a fluid approximation for an M/M/c queue with general distributions for the incident clearance times. Our numerical methods include M/PH2/c/K models with many servers and with phase‐type distributions for the time until an incident occurs or is cleared. We also investigate different time scalings for the rate of incident occurrence and clearance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The iterative method used by Esch (1964) and Pearson (1964, 1965a, b), for the solution of an implicit finite difference approximation to the Navier Stokes equation, is analysed. A more general iteration method is suggested that may require many iteration parameters, and it is shown how these parameters can be computed. It was found that when the non-dimensional number vΔt/2L2 is small, a single optimum iteration parameter exists (v being the kinematic viscosity, Δt the time step and L a characteristic length). An approximate expression for the “best” parameter is developed, and a procedure is described for improving that estimate. With the improved estimate and extrapolation in time, convergence is achieved in one or two iterations per time step on the average. In some cases the time step used was 200 times bigger than the time step required for stability of explicit schemes.  相似文献   

20.
A numerical method is presented for the variable coefficient, nonlinear hyperbolic equation u t + i=1 d V i(x, t)f i(u) x i = 0 in arbitrary space dimension for bounded velocities that are Lipschitz continuous in the x variable. The method is based on dimensional splitting and uses a recent front tracking method to solve the resulting one-dimensional non-conservative equations. The method is unconditionally stable, and it produces a subsequence that converges to the entropy solution as the discretization of time and space tends to zero. Four numerical examples are presented; numerical error mechanisms are illustrated for two linear equations, the efficiency of the method compared with a high-resolution TVD method is discussed for a nonlinear problem, and finally, applications to reservoir simulation are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号