首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficiency is a relative measure because it can be measured within different ranges. The traditional data envelopment analysis (DEA) measures the efficiencies of decision-making units (DMUs) within the range of less than or equal to one. The corresponding efficiencies are referred to as the best relative efficiencies, which measure the best performances of DMUs and determine an efficiency frontier. If the efficiencies are measured within the range of greater than or equal to one, then the worst relative efficiencies can be used to measure the worst performances of DMUs and determine an inefficiency frontier. In this paper, the efficiencies of DMUs are measured within the range of an interval, whose upper bound is set to one and the lower bound is determined through introducing a virtual anti-ideal DMU, whose performance is definitely inferior to any DMUs. The efficiencies turn out to be all intervals and are thus referred to as interval efficiencies, which combine the best and the worst relative efficiencies in a reasonable manner to give an overall measurement and assessment of the performances of DMUs. The new DEA model with the upper and lower bounds on efficiencies is referred to as bounded DEA model, which can incorporate decision maker (DM) or assessor's preference information on input and output weights. A Hurwicz criterion approach is introduced and utilized to compare and rank the interval efficiencies of DMUs and a numerical example is examined using the proposed bounded DEA model to show its potential application and validity.  相似文献   

2.
在传统的DEA模型中,最优相对效率模型是在不大于1的范围内研究决策单元的效率的,最差相对效率模型是在不小于1的范围内研究决策单元的效率,这两种模型在研究投影问题时,是在不同的范围内进行的,有一定的片面性.将在interval DEA模型中,研究决策单元的投影问题,该模型是在相同的约束域内研究最优和最差相对效率模型,得出的结论将更加全面,通过两个定理给出了非DEA有效的决策单元在DEA有效面上的投影表达式和非DEA无效的决策单元在DEA无效面上的投影表达式.同时,通过一个实例对决策单元在interval DEA模型中的投影结果与在传统的DEA模型的投影结果进行了比较,发现投影结果比传统模型得到的投影结果对实际的生产有更强的指导意义.  相似文献   

3.
在传统的DEA模型中,不论是最优相对效率模型或者最差相对效率模型,它们研究投影问题都是在不同的约束域内进行的,得出的结论都有一定的片面性.在bounded DEA模型中,决策单元的效率计算是在一个区间内进行的,可以同时研究非DEA有效的决策单元在有效前沿面上的投影和非DEA无效的决策单元在DEA无效面上的投影,得出的结论更加科学合理,并以定理的形式给出了投影结果的表达式.通过一个实例将投影结果与传统模型中得出的投影结果进行了比较,发现bounded DEA模型得到的投影结果对实际的生产具有更强的指导意义.  相似文献   

4.
The objective of the present paper is to propose a novel pair of data envelopment analysis (DEA) models for measurement of relative efficiencies of decision-making units (DMUs) in the presence of non-discretionary factors and imprecise data. Compared to traditional DEA, the proposed interval DEA approach measures the efficiency of each DMU relative to the inefficiency frontier, also called the input frontier, and is called the worst relative efficiency or pessimistic efficiency. On the other hand, in traditional DEA, the efficiency of each DMU is measured relative to the efficiency frontier and is called the best relative efficiency or optimistic efficiency. The pair of proposed interval DEA models takes into account the crisp, ordinal, and interval data, as well as non-discretionary factors, simultaneously for measurement of relative efficiencies of DMUs. Two numeric examples will be provided to illustrate the applicability of the interval DEA models.  相似文献   

5.
Data envelopment analysis (DEA) is a data-oriented approach for evaluating the performances of a set of peer entities called decision-making units (DMUs), whose performance is determined based on multiple measures. The traditional DEA, which is based on the concept of efficiency frontier (output frontier), determines the best efficiency score that can be assigned to each DMU. Based on these scores, DMUs are classified into DEA-efficient (optimistic efficient) or DEA-non-efficient (optimistic non-efficient) units, and the DEA-efficient DMUs determine the efficiency frontier. There is a comparable approach which uses the concept of inefficiency frontier (input frontier) for determining the worst relative efficiency score that can be assigned to each DMU. DMUs on the inefficiency frontier are specified as DEA-inefficient or pessimistic inefficient, and those that do not lie on the inefficient frontier, are declared to be DEA-non-inefficient or pessimistic non-inefficient. In this paper, we argue that both relative efficiencies should be considered simultaneously, and any approach that considers only one of them will be biased. For measuring the overall performance of the DMUs, we propose to integrate both efficiencies in the form of an interval, and we call the proposed DEA models for efficiency measurement the bounded DEA models. In this way, the efficiency interval provides the decision maker with all the possible values of efficiency, which reflect various perspectives. A numerical example is presented to illustrate the application of the proposed DEA models.  相似文献   

6.
Data envelopment analysis (DEA) performance evaluation can be implemented from either optimistic or pessimistic perspectives. For an overall performance evaluation from both perspectives, bounded DEA models are introduced to evaluate decision making units (DMUs) in terms of interval efficiencies. This paper reveals unreachability of efficiency and distortion of frontiers associated with the existing bounded DEA models. New bounded DEA models against these problems are proposed by integrating the archetypal optimistic and pessimistic DEA models into a model with bounded efficiency. It provides a new way of deriving empirical estimates of efficiency frontiers in tune with that identified by the archetypal models. Without distortion of frontiers, all DMUs reach interval efficiencies in accordance with that determined by the archetypal models. A unified evaluation and classification result is derived and the efficiency relationships between DMUs are preserved. It is shown that the newly proposed models are more reliable for overall performance evaluation in practice, as illustrated empirically by two examples.  相似文献   

7.
Data envelopment analysis (DEA) is a popular technique for measuring the relative efficiency of a set of decision making units (DMUs). Fully ranking DMUs is a traditional and important topic in DEA. In various types of ranking methods, cross efficiency method receives much attention from researchers because it evaluates DMUs by using self and peer evaluation. However, cross efficiency score is usual nonuniqueness. This paper combines the DEA and analytic hierarchy process (AHP) to fully rank the DMUs that considers all possible cross efficiencies of a DMU with respect to all the other DMUs. We firstly measure the interval cross efficiency of each DMU. Based on the interval cross efficiency, relative efficiency pairwise comparison between each pair of DMUs is used to construct interval multiplicative preference relations (IMPRs). To obtain the consistency ranking order, a method to derive consistent IMPRs is developed. After that, the full ranking order of DMUs from completely consistent IMPRs is derived. It is worth noting that our DEA/AHP approach not only avoids overestimation of DMUs’ efficiency by only self-evaluation, but also eliminates the subjectivity of pairwise comparison between DMUs in AHP. Finally, a real example is offered to illustrate the feasibility and practicality of the proposed procedure.  相似文献   

8.
针对传统区间数据包络分析方法,在确定每一个决策单元区间效率的上界和下界时,存在的评价尺度不一致且计算复杂等问题,本文提出了一种同时最大化所有决策单元的效率上界和下界的公共权重区间DEA模型,并给出了一种考虑决策者偏好信息的可能度排序方法,用以解决区间效率的全排序问题。最后,以中国大陆11个沿海省份工业生产效率测算为例说明了所提方法的有效性和实用性。  相似文献   

9.
In this paper, we investigate DEA with interval input-output data. First we show various extensions of efficiency and that 25 of them are essential. Second we formulate the efficiency test problems as mixed integer programming problems. We prove that 14 among 25 problems can be reduced to linear programming problems and that the other 11 efficiencies can be tested by solving a finite sequence of linear programming problems. Third, in order to obtain efficiency scores, we extend SBM model to interval input-output data. Fourth, to moderate a possible positive overassessment by DEA, we introduce the inverted DEA model with interval input-output data. Using efficiency and inefficiency scores, we propose a classification of DMUs. Finally, we apply the proposed approach to Japanese Bank Data and demonstrate its advantages.  相似文献   

10.
The existence of alternate optima for the DEA weights may reduce the usefulness of the cross-efficiency evaluation, since the ranking provided depends on the choice of weights that the different DMUs make. In this paper, we develop a procedure to carry out the cross-efficiency evaluation without the need to make any specific choice of DEA weights. The proposed procedure takes into consideration all the possible choices of weights that all the DMUs can make, and yields for each unit a range for its possible rankings instead of a single ranking. This range is determined by the best and the worst rankings that would result in the best and the worst scenarios of each unit across all the DEA weights of all the DMUs. This approach might identify good/bad performers, as those that rank at the top/bottom irrespective of the weights that are chosen, or units that outperform others in all the scenarios. In addition, it may be used to analyze the stability of the ranking provided by the standard cross-efficiency evaluation.  相似文献   

11.
Data envelopment analysis (DEA) is a method to estimate the relative efficiency of decision-making units (DMUs) performing similar tasks in a production system that consumes multiple inputs to produce multiple outputs. So far, a number of DEA models with interval data have been developed. The CCR model with interval data, the BCC model with interval data and the FDH model with interval data are well known as basic DEA models with interval data. In this study, we suggest a model with interval data called interval generalized DEA (IGDEA) model, which can treat the stated basic DEA models with interval data in a unified way. In addition, by establishing the theoretical properties of the relationships among the IGDEA model and those DEA models with interval data, we prove that the IGDEA model makes it possible to calculate the efficiency of DMUs incorporating various preference structures of decision makers.  相似文献   

12.
This paper discusses and reviews the use of super-efficiency approach in data envelopment analysis (DEA) sensitivity analyses. It is shown that super-efficiency score can be decomposed into two data perturbation components of a particular test frontier decision making unit (DMU) and the remaining DMUs. As a result, DEA sensitivity analysis can be done in (1) a general situation where data for a test DMU and data for the remaining DMUs are allowed to vary simultaneously and unequally and (2) the worst-case scenario where the efficiency of the test DMU is deteriorating while the efficiencies of the other DMUs are improving. The sensitivity analysis approach developed in this paper can be applied to DMUs on the entire frontier and to all basic DEA models. Necessary and sufficient conditions for preserving a DMU’s efficiency classification are developed when various data changes are applied to all DMUs. Possible infeasibility of super-efficiency DEA models is only associated with extreme-efficient DMUs and indicates efficiency stability to data perturbations in all DMUs.  相似文献   

13.
Network DEA: A slacks-based measure approach   总被引:2,自引:0,他引:2  
Traditional DEA models deal with measurements of relative efficiency of DMUs regarding multiple-inputs vs. multiple-outputs. One of the drawbacks of these models is the neglect of intermediate products or linking activities. After pointing out needs for inclusion of them to DEA models, we propose a slacks-based network DEA model, called Network SBM, that can deal with intermediate products formally. Using this model we can evaluate divisional efficiencies along with the overall efficiency of decision making units (DMUs).  相似文献   

14.
Data envelopment analysis (DEA) is a non-parametric approach based on linear programming that has been widely applied for evaluating the relative efficiency of a set of homogeneous decision-making units (DMUs) with multiple inputs and outputs. The original DEA models use positive input and output variables that are measured on a ratio scale, but these models do not apply to the variables in which negative data can appear. However, with the widespread use of interval scale data and undesirable data, the emphasis has been directed towards the simultaneous consideration of the positive and negative data in DEA models. In this paper, using the slacks-based measure, we propose an extended model to evaluate the efficiency of DMUs, even if some variables are measured on an interval scale and some on a ratio scale. Moreover, the extended model allows for the presence of all interval-scale variables, which are capable of taking both negative and positive values.  相似文献   

15.
Data envelopment analysis (DEA) is a technique for evaluating relative efficiencies of peer decision making units (DMUs) which have multiple performance measures. These performance measures have to be classified as either inputs or outputs in DEA. DEA assumes that higher output levels and/or lower input levels indicate better performance. This study is motivated by the fact that there are performance measures (or factors) that cannot be classified as an input or output, because they have target levels with which all DMUs strive to achieve in order to attain the best practice, and any deviations from the target levels are not desirable and may indicate inefficiency. We show how such performance measures with target levels can be incorporated in DEA. We formulate a new production possibility set by extending the standard DEA production possibility set under variable returns-to-scale assumption based on a set of axiomatic properties postulated to suit the case of targeted factors. We develop three efficiency measures by extending the standard radial, slacks-based, and Nerlove–Luenberger measures. We illustrate the proposed model and efficiency measures by applying them to the efficiency evaluation of 36 US universities.  相似文献   

16.
Data Envelopment Analysis (DEA) is a technique based on mathematical programming for evaluating the efficiency of homogeneous Decision Making Units (DMUs). In this technique inefficient DMUs are projected on to the frontier which constructed by the best performers. Centralized Resource Allocation (CRA) is a method in which all DMUs are projected on to the efficient frontier through solving just one DEA model. The intent of this paper is to present the Stochastic Centralized Resource Allocation (SCRA) in order to allocate centralized resources where inputs and outputs are stochastic. The concept discussed throughout this paper is illustrated using the aforementioned example.  相似文献   

17.
Data Envelopment Analysis (DEA) is a very effective method to evaluate the relative efficiency of decision-making units (DMUs). Since the data of production processes cannot be precisely measured in some cases, the uncertain theory has played an important role in DEA. This paper attempts to extend the traditional DEA models to a fuzzy framework, thus producing a fuzzy DEA model based on credibility measure. Following is a method of ranking all the DMUs. In order to solve the fuzzy model, we have designed the hybrid algorithm combined with fuzzy simulation and genetic algorithm. When the inputs and outputs are all trapezoidal or triangular fuzzy variables, the model can be transformed to linear programming. Finally, a numerical example is presented to illustrate the fuzzy DEA model and the method of ranking all the DMUs.  相似文献   

18.
Data envelopment analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs), where the internal structures of DMUs are treated as a black-box. Recently DEA has been extended to examine the efficiency of DMUs that have two-stage network structures or processes, where all the outputs from the first stage are intermediate measures that make up the inputs to the second stage. The resulting two-stage DEA model not only provides an overall efficiency score for the entire process, but also yields an efficiency score for each of the individual stages. The current paper develops a Nash bargaining game model to measure the performance of DMUs that have a two-stage structure. Under Nash bargaining theory, the two stages are viewed as players and the DEA efficiency model is a cooperative game model. It is shown that when only one intermediate measure exists between the two stages, our newly developed Nash bargaining game approach yields the same results as applying the standard DEA approach to each stage separately. Two real world data sets are used to demonstrate our bargaining game model.  相似文献   

19.
《Applied Mathematical Modelling》2014,38(7-8):2028-2036
Conventional DEA models assume deterministic, precise and non-negative data for input and output observations. However, real applications may be characterized by observations that are given in form of intervals and include negative numbers. For instance, the consumption of electricity in decentralized energy resources may be either negative or positive, depending on the heat consumption. Likewise, the heat losses in distribution networks may be within a certain range, depending on e.g. external temperature and real-time outtake. Complementing earlier work separately addressing the two problems; interval data and negative data; we propose a comprehensive evaluation process for measuring the relative efficiencies of a set of DMUs in DEA. In our general formulation, the intervals may contain upper or lower bounds with different signs. The proposed method determines upper and lower bounds for the technical efficiency through the limits of the intervals after decomposition. Based on the interval scores, DMUs are then classified into three classes, namely, the strictly efficient, weakly efficient and inefficient. An intuitive ranking approach is presented for the respective classes. The approach is demonstrated through an application to the evaluation of bank branches.  相似文献   

20.
We apply some recently introduced bootstrap techniques to derive bias corrected efficiency scores for a model for groups and hierarchies in DEA. The use of the bootstrap makes it possible to overcome some deficiencies of the original formulation of this model, which rests on rescaling individual efficiency scores using average efficiencies calculated from different subsets of the data. These average or structural efficiencies are differently biased and bias varies with sample size when standard DEA techniques are used. Bias correction makes it possible to identify the true differences in efficiency and thus to compare DMUs belonging to different groups via their rescaled individual efficiency scores on one common basis. Moreover, this type of bias problem is present in other DEA applications. Therefore, the method proposed to deal with it has many potential applications beyond the groups and hierarchies model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号