首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
金属玻璃TM-Met(TM为过渡金属原子,Met为类金属原子,如硼、磷等)由于其优异性能已成为非晶态研究的重要课题之一。实验研究表明,类金属原子与过渡金属原子构成非晶态合金(即金属玻璃)后,平均原子磁矩随Met的含量在一定范围内的变化呈线性下降关系.相当多的文献用“电荷转移刚性能带”模型来解释.认为金属玻璃的能带是  相似文献   

2.
In the research on metallic glass, there are arguments against the "rigid band charge transfer", model which assumes a charge transfer from metalloid atoms to transition metal atoms to explain the experimental evidence of linear reduction of average atomic magnetic moment with the increasing concentration of metalloid atoms, but they could not explain the experimental relation of the reduction. In the present work, spin-polarized SCC-DV-X_a calculation for atomic clusters for metallic glass Co-B has been empoloyed to investigate the local electronic structure and magnetic property of the metallic glass. As opposed to the "rigid band charge transfer" model, calculation in the present work indicates that charge transfers from Co4s to both B and Co3d. It is found that there is Co3d4s-B2p hybird bonding in Co-B, which leads to the linear reduction of average atomic magnetic moment. Thus the explanation removes the above controversy.  相似文献   

3.
Using first-principles calculations we systematically investigate the atomic, electronic and magnetic properties of novel two-dimensional materials (2DM) with a stoichiometry C3N which has recently been synthesized. We investigate how the number of layers affect the electronic properties by considering monolayer, bilayer and trilayer structures, with different stacking of the layers. We find that a transition from semiconducting to metallic character occurs which could offer potential applications in future nanoelectronic devices. We also study the affect of width of C3N nanoribbons, as well as the radius and length of C3N nanotubes, on the atomic, electronic and magnetic properties. Our results show that these properties can be modified depending on these dimensions, and depend markedly on the nature of the edge states. Functionalization of the nanostructures by the adsorption of H adatoms is found induce metallic, half-metallic, semiconducting and ferromagnetic behavior, which offers an approach to tailor the properties, as can the application of strain. Our calculations give insight into this new family of C3N nanostructures, which reveal unusual electronic and magnetic properties, and may have great potential in applications such as sensors, electronics and optoelectronic at the nanoscale.  相似文献   

4.
TiO2 nanoparticles are of great current interest for applications in photo‐electronic materials including light‐energy conversion, artificial photosynthetic systems as well as photocatalysis. The success of these applications relies on the exciton recombination dynamics and visible‐light sensitivity of the TiO2 nanomaterials. Thus, in order to develop the highly efficient photo‐electronic materials absorbing visible light, different low dimensional TiO2 nanostructures such as nanodiscs, nanofibers and nanochains were synthesized, and thereafter their surfaces were modified by incorporating with Sn‐porphyrins and heteropoly acid. The optoelectronic properties of the surface‐modified nanomaterials were investigated with regard to the optical properties and the surface exciton dynamics by using both steady‐state and ultrafast time‐resolved laser spectroscopic techniques including single nanoparticle photoluminescence technique. These results were correlated with the photo‐electronic properties including photocatalytic activities and solar cell efficiencies, indicating that the electron transfer mechanism in the modified nanostructures may be similar to the “Z‐scheme” of the plant photosynthetic system so that both photocatalytic activity and solar cell efficiencies were synergistically enhanced by using two color illumination.  相似文献   

5.
Magnetite nanoparticles of Fe(3)O(4) have been found to grow into large highly branched nanostructures including nanochains and highly branched nanotrees in the solid state through a postannealing process. By varying the preparation conditions such as annealing time and temperature, the nanostructures could be easily manipulated. Changing the starting concentration of the magnetic nanoparticle solution also caused significant changes of the nanoarchitectures. When the magnetic nanoparticle concentration is low, the nanoparticles formed straight rods mainly with an average diameter of 80 nm and a length of several microns. With increasing concentration of the nanoparticles, treelike structures began to form. With further increase of the concentration, well-ordered nanostructures with the appearance of snowflakes were generated. The driving force for the formation of the highly ordered nanostructures includes interaction between the nanoparticles and interaction through surface-capping molecules. This experiment demonstrates that novel nanostructures can be generated by self-assembly of magnetic nanoparticles under the solid state.  相似文献   

6.
Formation energies, chemical bonding, electronic structure, and optical properties of metal-organic frameworks of alkaline earth metals, A-IRMOF-1 (where A = Be, Mg, Ca, Sr, or Ba), have been systemically investigated with DFT methods. The unit cell volumes and atomic positions were fully optimized with the Perdew-Burke-Ernzerhof functional. By fitting the E-V data into the Murnaghan, Birch and Universal equation of states (UEOS), the bulk modulus and its pressure derivative were estimated and provided almost identical results. The data indicate that the A-IRMOF-1 series are soft materials. The estimated bandgap values are all ca. 3.5 eV, indicating a nonmetallic behavior which is essentially metal independent within this A-IRMOF-1 series. The calculated formation energies for the A-IRMOF-1 series are -61.69 (Be), -62.53 (Mg), -66.56 (Ca), -65.34 (Sr), and -64.12 (Ba) kJ mol(-1) and are substantially more negative than that of Zn-based IRMOF-1 (MOF-5) at -46.02 kJ mol(-1). From the thermodynamic point of view, the A-IRMOF-1 compounds are therefore even more stable than the well-known MOF-5. The linear optical properties of the A-IRMOF-1 series were systematically investigated. The detailed analysis of chemical bonding in the A-IRMOF-1 series reveals the nature of the A-O, O-C, H-C, and C-C bonds, i.e., A-O is a mainly ionic interaction with a metal dependent degree of covalency. The O-C, H-C, and C-C bonding interactions are as anticipated mainly covalent in character. Furthermore it is found that the geometry and electronic structures of the presently considered MOFs are not very sensitive to the k-point mesh involved in the calculations. Importantly, this suggests that sampling with Γ-point only will give reliable structural properties for MOFs. Thus, computational simulations should be readily extended to even more complicated MOF systems.  相似文献   

7.
We consider studies of the atomic and magnetic structure near surfaces by photoelectron diffraction and by the holographic inversion of both photoelectron diffraction data and diffraction data involving the emission of fluorescent x-rays. The current status of photoelectron diffraction studies of surfaces, interfaces, and other nanostructures is first briefly reviewed, and then several recent developments and proposals for future areas of application are discussed. The application of full-solid-angle diffraction data, together with simultaneous characterization by low energy electron diffraction and scanning tunneling microscopy, to the epitaxial growth of oxides and metals is considered. Several new avenues that are being opened up by third-generation synchrotron radiation sources are also discussed. These include site-resolved photoelectron diffraction from surface and interface atoms, the possibility of time-resolved measurements of surface reactions with chemical-state resolution, and circular dichroism in photoelectron angular distributions from both non-magnetic and magnetic systems. The addition of spin to the photoelectron diffraction measurement is also considered as a method for studying short-range magnetic order, including the measurement of surface magnetic phase transitions. This spin sensitivity can be achieved through either core-level multiplet splittings or circular-polarized excitation of spin-orbit-split levels. The direct imaging of short-range atomic structure by both photoelectron holography and two distinct types of x-ray holography involving fluorescent emission is also discussed. Both photoelectron and x-ray holography have demonstrated the ability to directly determine at least approximate atomic structures in three dimensions. Photoelectron holography with spin resolution may make it possible also to study short-range magnetic order in a holographic fashion. Although much more recent in its first experimental demonstrations, x-ray fluorescence holography should permit deriving more accurate atomic images for a variety of materials, including both surface and bulk regions.  相似文献   

8.
LCAO and PW DFT calculations of the lattice constant, bulk modulus, cohesive energy, charge distribution, band structure, and DOS for UN single crystal are analyzed. It is demonstrated that a choice of the uranium atom relativistic effective core potentials considerably affects the band structure and magnetic structure at low temperatures. All calculations indicate mixed metallic-covalent chemical bonding in UN crystal with U5f states near the Fermi level. On the basis of the experience accumulated in UN bulk simulations, we compare the atomic and electronic structure as well as the formation energy for UN(001) surface calculated on slabs of different thickness using both DFT approaches.  相似文献   

9.
A vicinal Au(11 12 12) surface, naturally patterned into a rectangular superlattice, has been used as a template to prepare C60 nanostructures with long-range order and uniform size. At a coverage of 0.1 monolayer and at room temperature, a two-dimensional long-range ordered superlattice of molecular nanochains is achieved, which perfectly replicates the periodicity of the template surface. The fullerene nanochains are found to be located exclusively on the face-centered cubic stacking domains at the lower step edges. Our experiments demonstrate that highly periodic molecular nanochains can be fabricated through a site-selective anchoring method.  相似文献   

10.
Stable geometries, electronic structures, and magnetic properties of the ZnO monolayer doped with 3d transition‐metal (TM) (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) atoms substituting the cation Zn have been investigated using first‐principles pseudopotential plane wave method within density functional theory (DFT). It is found that these nine atomic species can be effectively doped in the ZnO monolayer with formation energies ranging from ?6.319 to ?0.132 eV. Furthermore, electronic structures and magnetic properties of ZnO monolayer can be modified by such doping. The results show that the doping of Cr, Mn, Fe, Co, Ni, and Cu atoms can induce magnetization, while no magnetism is observed when Sc, Ti, and V atoms are doped into the ZnO monolayer. The magnetic moment is mainly due to the strong p–d mixing of O and TM (Cr, Mn, Fe, Co, Ni, and Cu) orbitals. These results are potentially useful for spintronic applications and the development of magnetic nanostructures. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
We describe the occurrence of computational artifacts when the principal layer method is used in combination with the cluster approximation for the calculation of electronic transport properties of nanostructures. For a one-dimensional gold chain, we observe an unphysical band in the band structure. The artificial band persists for large principal layers and for large buffer sizes. We demonstrate that the assumption of equality between Hamiltonian elements of neighboring layers is no longer valid and that a discontinuity is introduced in the potential at the layer transition. The effect depends on the basis set. When periodic boundary conditions are imposed and the k-space sampling is converged, the discontinuity disappears and the principal layer method can be correctly applied by using a linear combination of atomic orbitals as basis set.  相似文献   

12.
Monoclinic clinobisvanite bismuth vanadate is an important material with wide applications. However, its electronic structure and optical properties are still not thoroughly understood. Density functional theory calculations were adopted in the present work, to comprehend the band structure, density of states, and projected wave function of BiVO(4). In particular, we put more emphasis upon the intrinsic relationship between its structure and properties. Based on the calculated results, its molecular-orbital bonding structure was proposed. And a significant phenomenon of optical anisotropy was observed in the visible-light region. Furthermore, it was found that its slightly distorted crystal structure enhances the lone-pair impact of Bi 6s states, leading to the special optical properties and excellent photocatalytic activities.  相似文献   

13.
The electronic structure, chemical bonding, geometry, and effects produced by Sr-doping in CaCO(3) have been studied on the basis of density-functional theory using the VASP simulation package and molecular-orbital theory utilizing the CLUSTERD computer code. Two calcium carbonate structures which occur naturally in anhydrous crystalline forms, calcite and aragonite, were considered in the present investigation. The obtained diagrams of density of states show similar patterns for both materials. The spatial structures are computed and analyzed in comparison to the available experimental data. The electronic properties and atomic displacements because of the trace element Sr-incorporation are discussed in a comparative manner for the two crystalline structures.  相似文献   

14.
The existence of a family of very thin carbon needlelike nanostructures is predicted: the geometry and stability of several carbon nanoneedles (CNNs) formed by C4 and C6 units have been studied by quantum chemistry computational modeling methods. The structures of carbon nanoneedles are tighter than even the smallest single wall nanotubes (SWNTs) based on (4, 0) naphthacene. The electronic properties, energetic stability of geometrical structures with various terminal units are investigated. The relatively large band gaps, the strong bonding, and additional orbital interactions within the C4 rings and between the C4 layers make the H4(C4)(n)H4 type molecules nonmetallic. We have found indications that if the CNN (3, 0) structures are very long (in the limit of infinite-length), then they are likely to have semiconducting properties and could possibly be used as actual semiconductors. The studied families of CNNs can be considered as carbon nanostructures with unique structural and chemical properties and with possible potential for unusual electronic properties, with likely practical applications as nanomaterials and nanostructure devices.  相似文献   

15.
在十六烷基三甲基溴化铵(CTAB)的水溶液中,用NaBH4还原FeCl3,在反应过程中施加外部磁场,制得了一维多孔Fe-B合金纳米结构。研究表明,外部磁场对一维纳米结构的形成有重要影响,当不加外部磁场时得到的是离散的球形纳米粒子;外部磁场还影响Fe-B纳米粒子的晶体结构:外部磁场存在下得到的是无定形Fe-B合金,而不加外部磁场时则得到多晶Fe-B合金。CTAB对多孔的形成起到关键的作用,当不加CTAB时得到了实心球状纳米粒子。初步讨论了这种一维孔状Fe-B合金纳米结构的形成机理。用XRD、ICP-AES、TEM对样品进行了表征,测定了它们的磁性质。结果表明,在施加不同磁场强度条件下制得的样品具有不同的饱和磁化强度和矫顽力。  相似文献   

16.
In solids one often starts with an ideal crystal that is studied on the atomic scale at zero temperature. The unit cell may contain several atoms (at certain positions) and is repeated with periodic boundary conditions. Quantum mechanics governs the electronic structure that is responsible for properties such as relative stability, chemical bonding, relaxation of the atoms, phase transitions, electrical, mechanical, optical or magnetic behavior, etc. Corresponding first principles calculations are mainly done within density functional theory (DFT), according to which the many-body problem of interacting electrons and nuclei is mapped to a series of one-electron equations, the so-called Kohn-Sham (KS) equations. One among the most precise schemes to solve the KS equations is the linearized-augmented-plane-wave (LAPW) method that is employed for example in the computer code WIEN2k to study crystal properties on the atomic scale (see www.wien2k.at). Nowadays such calculations can be done—on sufficiently powerful computers—for systems containing about 100 atoms per unit cell. A selection of representative examples and the references to the original literature is given.  相似文献   

17.
The nano dimensions, graphitic surface chemistry and electronic properties of single walled carbon nanotubes make such a material an ideal candidate for chemical or biochemical sensing. Carbon nanotubes can be nondestructively oxidized along their sidewalls or ends and subsequently covalently functionalized with colloidal particles or polyamine dendrimers via carboxylate chemistry. Proteins adsorb individually, strongly and noncovalently along nanotube lengths. These nanotube-protein conjugates are readily characterized at the molecular level by atomic force microscopy. Several metalloproteins and enzymes have been bound on both the sidewalls and termini of single walled carbon nanotubes. Though coupling can be controlled, to a degree, through variation of tube oxidative pre-activation chemistry, careful control experiments and observations made by atomic force microscopy suggest that immobilization is strong, physical and does not require covalent bonding. Importantly, in terms of possible device applications, protein attachment appears to occur with retention of native biological structure. Nanotube electrodes exhibit useful voltammetric properties with direct electrical communication possible between a redox-active biomolecule and the delocalized pi system of its carbon nanotube support.  相似文献   

18.
Nanostructures of Au and Si as well as Au-Si hybrid structures are topics of great current interest from both scientific and technological points of view. Recent discovery of Au clusters having fullerene-like geometries and the possibility of endohedral complexes with Si atoms inside the Au cage opens new possibilities for designing Au-Si nanostructures. Using ab initio simulated annealing method we have examined the stability of Si-Au16 endohedral complex. Contrary to what we believed, we find that the endohedral configuration is metastable and the structure where Si atom binds to the exterior surface of the Au16 cage is the lowest energy structure. The bonding of Si to Au cluster mimics its behavior of that in bulk and liquid phase of Au. In addition, doping of Si in high concentration would cause fracture and embrittlement in gold nanostructures just as it does in the bulk phase. Covalent bonding between Au-Au and Au-Si is found to be a dominant feature in the stability of the Au-Si nanostructures. Our study provides insight that may be useful in fabricating hybrid Au-Si nanostructures for applications microelectronics, catalysis, biomedicine, and jewelry industry.  相似文献   

19.
Soft x-ray fluorescence spectroscopy has been used to examine the electronic structure of deeply buried silicide thin films that arise in Fe/Si multilayers. These systems exhibit antiferromagnetic (AF) coupling of the Fe layers, despite their lack of a noble metal spacer layer found in most GMR materials. Also, the degree of coupling is very dependent on preparation conditions, especially spacer layer thickness and growth temperature. The valence band spectra are quite different for films with different spacerlayer thickness yet are very similar for films grown at different growth temperatures. The latter result is surprising since AF coupling is strongly dependent on growth temperature. Combining near-edge x-ray absorption with the fluorescence data demonstrates that the local bonding structure in the silicide spacer layer in epitaxial films which exhibit AF coupling are metallic. These results indicate the equal roles of crystalline coherence and electronic structure in determining the magnetic properties of these systems.  相似文献   

20.
A fundamental understanding of the properties of various metal/graphene nanostructures is of great importance for realising their potential applications in electronics and spintronics. The electronic and magnetic properties of three metal/graphene adducts (metal = Li, Co or Fe) are investigated using first-principles calculation. It is predicated that the metal/graphene adducts have strong affinity to aromatic molecule 1,2-dichlorobenzene (DCB), and the resultant DCB-metal/graphene sandwich structures are much more stable than the simple DCB/graphene adduct. Importantly, it is found that the adsorption of DCB slightly enhances the magnetic moment of the Co/graphene, but turns the Fe/graphene from magnetic to nonmagnetic. A detailed theoretical explanation of the different magnetic properties of the DCB/Co/graphene and DCB/Fe/graphene is achieved based on their different d-band splitting upon DCB adsorption. In addition, the transport property study indicates that the Fe/graphene is a better sensing material for DCB than the pristine graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号