首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For exact Newton method for solving monotone semidefinite complementarity problems (SDCP), one needs to exactly solve a linear system of equations at each iteration. For problems of large size, solving the linear system of equations exactly can be very expensive. In this paper, we propose a new inexact smoothing/continuation algorithm for solution of large-scale monotone SDCP. At each iteration the corresponding linear system of equations is solved only approximately. Under mild assumptions, the algorithm is shown to be both globally and superlinearly convergent.  相似文献   

2.
Convergence of a non-interior continuation algorithm for the monotone SCCP   总被引:1,自引:0,他引:1  
It is well known that the symmetric cone complementarity problem(SCCP) is a broad class of optimization problems which contains many optimization problems as special cases.Based on a general smoothing function,we propose in this paper a non-interior continuation algorithm for solving the monotone SCCP.The proposed algorithm solves at most one system of linear equations at each iteration.By using the theory of Euclidean Jordan algebras,we show that the algorithm is globally linearly and locally quadratically convergent under suitable assumptions.  相似文献   

3.
对水平线性互补问题提出了一种广义中心路径跟踪算法.任意的原始-对偶可行内点均可作为算法的初始点.每步迭代选择“仿射步”与“中心步”的凸组合为新的迭代方向,采用使对偶间隙尽可能减小的最大步长.算法的迭代复杂性为O(√nL).  相似文献   

4.
基于一类带有参数theta的新方向, 提出了求解单调线性互补问题的宽邻 域路径跟踪内点算法, 且当theta=1时即为经典牛顿方向. 当取theta为与问题规模 n无关的常数时, 算法具有O(nL)迭代复杂性, 其中L是输入数据的长度, 这与经典宽邻 域算法的复杂性相同; 当取theta=\sqrt{n/\beta\tau}时, 算法具有O(\sqrt{n}L)迭代复杂性, 这里的\beta, \tau是邻域参数, 这与窄邻域算法的复杂性相同. 这是首次研究包括经典宽邻域路径跟踪算法的一类内点算法, 给出了统一的算法框架和收敛性分析方法.  相似文献   

5.
In this paper we deal with the study of the polynomial complexity and numerical implementation for a short-step primal-dual interior point algorithm for monotone linear complementarity problems LCP. The analysis is based on a new class of search directions used by the author for convex quadratic programming (CQP) [M. Achache, A new primal-dual path-following method for convex quadratic programming, Computational and Applied Mathematics 25 (1) (2006) 97-110]. Here, we show that this algorithm enjoys the best theoretical polynomial complexity namely , iteration bound. For its numerical performances some strategies are used. Finally, we have tested this algorithm on some monotone linear complementarity problems.  相似文献   

6.
In this paper, we present a new smoothing Newton method for solving monotone weighted linear complementarity problem (WCP). Our algorithm needs only to solve one linear system of equation and performs one line search per iteration. Any accumulation point of the iteration sequence generated by our algorithm is a solution of WCP. Under suitable conditions, our algorithm has local quadratic convergence rate. Numerical experiments show the feasibility and efficiency of the algorithm.  相似文献   

7.
Recently, Chen and Tseng extended non-interior continuation/ smooth- ing methods for solving linear/ nonlinear complementarity problems to semidefinite complementarity problems (SDCP). In this paper we propose a non-interior continuation method for solving the monotone SDCP based on the smoothed Fischer—Burmeister function, which is shown to be globally linearly and locally quadratically convergent under suitable assumptions. Our algorithm needs at most to solve a linear system of equations at each iteration. In addition, in our analysis on global linear convergence of the algorithm, we need not use the assumption that the Fréchet derivative of the function involved in the SDCP is Lipschitz continuous. For non-interior continuation/ smoothing methods for solving the nonlinear complementarity problem, such an assumption has been used widely in the literature in order to achieve global linear convergence results of the algorithms.  相似文献   

8.
Recently, Chen and Tseng extended non-interior continuation/ smooth- ing methods for solving linear/ nonlinear complementarity problems to semidefinite complementarity problems (SDCP). In this paper we propose a non-interior continuation method for solving the monotone SDCP based on the smoothed Fischer—Burmeister function, which is shown to be globally linearly and locally quadratically convergent under suitable assumptions. Our algorithm needs at most to solve a linear system of equations at each iteration. In addition, in our analysis on global linear convergence of the algorithm, we need not use the assumption that the Fréchet derivative of the function involved in the SDCP is Lipschitz continuous. For non-interior continuation/ smoothing methods for solving the nonlinear complementarity problem, such an assumption has been used widely in the literature in order to achieve global linear convergence results of the algorithms.  相似文献   

9.
基于Chen-Harker—Kanzow-Smale光滑函数,对单调非线性互补问题NCP(f)给出了一种不可行非内点连续算法,该算法在每次迭代时只需求解一个线性等式系统,执行一次线搜索,算法在NCP(f)的解处不需要严格互补的条件下,具有全局线性收敛性和局部二次收敛性.  相似文献   

10.
Chen and Tseng (Math Program 95:431?C474, 2003) extended non-interior continuation methods for solving linear and nonlinear complementarity problems to semidefinite complementarity problems (SDCP), in which a system of linear equations is exactly solved at each iteration. However, for problems of large size, solving the linear system of equations exactly can be very expensive. In this paper, we propose a version of one of the non-interior continuation methods for monotone SDCP presented by Chen and Tseng that incorporates inexactness into the linear system solves. Only one system of linear equations is inexactly solved at each iteration. The global convergence and local superlinear convergence properties of the method are given under mild conditions.  相似文献   

11.
最近,Zhao和Sun提出了一个求解sufficient线性互补问题的高阶不可行内点算法.不需要严格互补解条件,他们的算法获得了高阶局部收敛率,但他们的文章没有报告多项式复杂性结果.本文我们考虑他们所给算法的一个简化版本,即考虑求解单调水平线性互补问题的一个高阶可行内点算法.我们证明了算法的迭代复杂性是  相似文献   

12.
In this paper, an inverse complementarity power iteration method (ICPIM) for solving eigenvalue complementarity problems (EiCPs) is proposed. Previously, the complementarity power iteration method (CPIM) for solving EiCPs was designed based on the projection onto the convex cone K. In the new algorithm, a strongly monotone linear complementarity problem over the convex cone K is needed to be solved at each iteration. It is shown that, for the symmetric EiCPs, the CPIM can be interpreted as the well‐known conditional gradient method, which requires only linear optimization steps over a well‐suited domain. Moreover, the ICPIM is closely related to the successive quadratic programming (SQP) via renormalization of iterates. The global convergence of these two algorithms is established by defining two nonnegative merit functions with zero global minimum on the solution set of the symmetric EiCP. Finally, some numerical simulations are included to evaluate the efficiency of the proposed algorithms.  相似文献   

13.
In this paper we propose a weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem. The algorithm is based on a new technique for finding a class of search directions and the strategy of the central path. At each iteration, we only use full-Newton step. Finally, the currently best known iteration bound for the algorithm with a small-update method, namely, O(√nlog n/ε) is derived, which is as good as the bound for the linear optimization analogue.  相似文献   

14.
Mehrotra型预估-校正算法是很多内点算法软件包的算法基础,但它的多项式迭代复杂性直到2007年才被Salahi等人证明.通过选择一个固定的预估步长及与Salahi文中不同的校正方向,本文把Salahi等人的算法拓展到单调线性互补问题,使得新算法的迭代复杂性为O(n log((x0)T s0/ε)),同时,初步的数值实验证明了新算法是有效的.  相似文献   

15.
In this paper, we investigate a class of nonlinear complementarity problems arising from the discretization of the free boundary problem, which was recently studied by Sun and Zeng [Z. Sun, J. Zeng, A monotone semismooth Newton type method for a class of complementarity problems, J. Comput. Appl. Math. 235 (5) (2011) 1261–1274]. We propose a new non-interior continuation algorithm for solving this class of problems, where the full-Newton step is used in each iteration. We show that the algorithm is globally convergent, where the iteration sequence of the variable converges monotonically. We also prove that the algorithm is globally linearly and locally superlinearly convergent without any additional assumption, and locally quadratically convergent under suitable assumptions. The preliminary numerical results demonstrate the effectiveness of the proposed algorithm.  相似文献   

16.
An infeasible-interior-point algorithm for linear complementarity problems   总被引:3,自引:0,他引:3  
We modify the algorithm of Zhang to obtain anO(n2L) infeasible-interior-point algorithm for monotone linear complementarity problems that has an asymptoticQ-subquadratic convergence rate. The algorithm requires the solution of at most two linear systems with the same coefficient matrix at each iteration.This research was supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.  相似文献   

17.
Typical solution methods for solving mixed complementarity problems either generatefeasible iterates but have to solve relatively complicated subproblems such as quadraticprograms or linear complementarity problems,or(those methods)have relatively simplesubproblems such as system of linear equations but possibly generate infeasible iterates.In this paper,we propose a new Newton-type method for solving monotone mixed com-plementarity problems,which ensures to generate feasible iterates,and only has to solve asystem of well-conditioned linear equations with reduced dimension per iteration.Withoutany regularity assumption,we prove that the whole sequence of iterates converges to a so-lution of the problem(truly globally convergent).Furthermore,under suitable conditions,the local superlinear rate of convergence is also established.  相似文献   

18.
In this paper, we propose a Newton-type method for solving a semismooth reformulation of monotone complementarity problems. In this method, a direction-finding subproblem, which is a system of linear equations, is uniquely solvable at each iteration. Moreover, the obtained search direction always affords a direction of sufficient decrease for the merit function defined as the squared residual for the semismooth equation equivalent to the complementarity problem. We show that the algorithm is globally convergent under some mild assumptions. Next, by slightly modifying the direction-finding problem, we propose another Newton-type method, which may be considered a restricted version of the first algorithm. We show that this algorithm has a superlinear, or possibly quadratic, rate of convergence under suitable assumptions. Finally, some numerical results are presented. Supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists. Supported in part by the Scientific Research Grant-in-Aid from the Ministry of Education, Science and Culture, Japan.  相似文献   

19.
1.IntroductionConsiderthefollowingnonlinearcomplementarityproblemsNCP(F)offindinganxER",suchthatwhereFisamappingfromR"intoitself.ItisanimportantformofthefollowingvariationalinequalityVI(F,X)offindinganxEX,suchthatwhereXCReisaclosedconvexset.WhenX=R7,(1.1)…  相似文献   

20.
In this paper, we propose a theoretical framework of an infeasible interior-point algorithm for solving monotone linear cornplementarity problems over symmetric cones (SCLCP). The new algorithm gets Newton-like directions from the Chen-Harker-Kanzow-Smale (CHKS) smoothing equation of the SCLCP. It possesses the following features: The starting point is easily chosen; one approximate Newton step is computed and accepted at each iteration; the iterative point with unit stepsize automatically remains in the neighborhood of central path; the iterative sequence is bounded and possesses (9(rL) polynomial-time complexity under the monotonicity and solvability of the SCLCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号