首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Tb3+-doped Sr3(PO4)2 phosphor was prepared by a sol-gel combustion method. A trigonal structure having Sr and O atoms occupying two different lattice sites were obtained. Scanning Auger nanoprobe was used to analyze the morphology of the particles. Photoluminescence (PL) and cathodoluminescence (CL) properties of Sr3(PO4)2:Tb powder phosphors were evaluated and compared. In addition, the CL intensity degradation of Sr3(PO4)2:Tb was evaluated when the powders were irradiated with a beam of electrons in a vacuum chamber maintained at an O2 pressure of 1 × 10−6 Torr or a background pressure of 1 × 10−8 Torr O2. The surface chemical composition of the degraded powders, analyzed by X-ray photoelectron spectroscopy (XPS), suggests that new compounds (metal oxides) of strontium and phosphorous were formed on the surface. It is most likely that these compounds contributed to the CL intensity degradation of the Sr3(PO4)2:Tb phosphors. The CL properties and possible mechanism by which the new metal oxides were formed on the surface due to a prolonged electron beam irradiation are discussed.  相似文献   

2.
Electron spin resonance (ESR), thermoluminescence and photoluminescence studies in Eu2+ activated Sr5(PO4)3Cl phosphor are reported in this paper. The Sr5(PO4)3Cl:Eu2+ phosphor is twice as sensitive as the conventional CaSO4:Dy phosphor used in thermoluminescence dosimetry of ionizing radiations. It has a linear response, simple glow curve, emission peaking at 456 nm. The defect centers formed in the Sr5(PO4)3Cl:Eu2+phosphor are studied by using the technique of ESR. A dominant TL glow peak at 430 K with a smaller shoulder at 410 K is observed in the phosphor. ESR studies indicate the presence at three centers at room temperature. Step annealing measurements show a connection between one of the centers and the dominant glow peak at 430 K. The 430 K TL peak is well correlated with center I, which is tentatively identified as (PO4)2− radical.  相似文献   

3.
The degradation of the cathodoluminescence (CL) intensity of cerium-doped yttrium silicate (Y2SiO5:Ce) phosphor powders was investigated for possible application in low voltage field emission displays (FEDs). Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and CL spectroscopy were used to monitor changes in the surface chemical composition and luminous efficiency of commercially available Y2SiO5:Ce phosphor powders. The degradation of the CL intensity for the powders is consistent with a well-known electron-stimulated surface chemical reaction (ESSCR) model. It was shown with XPS and CL that the electron stimulated reaction led to the formation of a luminescent silicon dioxide (SiO2) layer on the surface of the Y2SiO5:Ce phosphor powder. XPS also indicated that the Ce concentration in the surface layer increased during the degradation process and the formation of CeO2 and CeH3 were also part of the degradation process. The CL intensity first decreased until about 300 C cm−2 and then increased due to an extra peak arising at a wavelength of 650 nm.  相似文献   

4.
In this paper we report the combustion synthesis of trivalent rare-earth (RE3+ = Dy, Eu and Ce) activated Sr4Al2O7 phosphor. The prepared phosphors were characterized by the X-ray powder diffraction (XRD) and photoluminescence (PL) techniques. Photoluminescence emission peaks of Sr4Al2O7:Dy3+ phosphor at 474 nm and 578 nm in the blue and yellow region of the spectrum. The prepared Eu3+ doped phosphors were excited by 395 nm then we found that the characteristics emission of europium ions at 615 nm (5D0?7F2) and 592 nm (5D0?7F1). Photoluminescence (PL) peaks situated at wavelengths of 363 and 378 nm in the UV region under excitation at around 326 nm in the Sr4Al2O7:Ce3+ phosphor.  相似文献   

5.
E. Coetsee 《Applied Surface Science》2010,256(22):6641-10155
X-ray photoelectron spectroscopy (XPS) results were obtained for standard Y2SiO5:Ce phosphor powders as well as undegraded and 144 h electron degraded Y2SiO5:Ce pulsed laser deposited (PLD) thin films. The two Ce 3d peaks positioned at 877.9 ± 0.3 and 882.0 ± 0.2 eV are correlated with the two different sites occupied by Ce in the Y2SiO5 matrix. Ce replaced the Y in the two different sites with coordination numbers of 9 and 7. The two Ce 3d XPS peaks obtained during the thin film analysis were also correlated with the luminescent mechanism of the broad band emission spectra of the Y2SiO5:Ce X1 phase. These two different sites are responsible for the two main sets of cathodoluminescent (CL) and photoluminescence (PL) peaks situated at wavelengths of 418 and 496 nm. A 144 h electron degradation study on the Y2SiO5:Ce thin film yielded an increase in the CL intensity with a second broad emission peak emerging between 600 and 700 nm. XPS analysis showed the presence of SiO2 on the surface that formed during prolonged electron bombardment. The electron stimulated surface chemical reaction (ESSCR) model is used to explain the formation of this luminescent SiO2 layer.  相似文献   

6.
The hydrated oxygen deficient complex perovskite-related materials Sr4(Sr2Nb2)O11·nH2O and Sr4(Sr2Ta2)O11·nH2O were studied at high water vapour pressures over a large temperature range by electrical conductivity measurements, thermogravimetry (TG), and X-ray powder diffraction (XRPD). In humid atmospheres both materials are known to exhibit protonic conductivity below dehydration temperatures, with peak-shaped maxima at about 500 °C. In this work we show that the peaks expand to plateaus of high conductivity from 500 to 700 °C at a water vapour pressure of 1 atm. However, in situ synchrotron XRPD of Sr4(Sr2Nb2)O11·nH2O as a function of temperature shows that these observations are in fact coincident with melting and dehydration of a secondary phase Sr(OH)2. The stability of Sr4(Sr2Nb2)O11·nH2O and Sr4(Sr2Ta2)O11·nH2O in humid atmospheres is thus insufficient, causing decomposition into perovskites with lower Sr content and SrO/Sr(OH)2 secondary phases. This, in turn, rationalizes the observation of peaks and plateaus in the conductivity of these materials.  相似文献   

7.
The photoluminescence properties of Y1−x(PO3)3:xEu3+ (0<x≤0.2) are investigated. The excitation spectrum of Y0.85(PO3)3:0.15Eu3+ shows that both the (PO3)33− groups and the CT bands of O2−-Y3+ can efficiently absorb the excitation energy in the region of 120-250 nm. Under 147 nm excitation, the optimal emissive intensity of Y1−x(PO3)3:xEu3+ (0<x≤0.2) is about 36% of the commercial phosphor (Y,Gd)BO3:Eu3+, which hints that the absorbed energy by the host matrix could be efficiently transferred to Eu3+. We try to study the concentration quenching mechanism of Y1−x(PO3)3:xEu3+ (0<x≤0.2) under 147 and 172 nm excitation.  相似文献   

8.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

9.
SrAl2O4:Eu2+,Dy3+ thin films were grown on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique to investigate the effect of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological, photoluminescence (PL) and cathodoluminescence (CL) properties of the films. The films were ablated using a 248 nm KrF excimer laser. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and fluorescence spectrophotometry were used to characterize the thin films. Auger electron spectroscopy (AES) combined with CL spectroscopy were employed for the surface characterization and electron-beam induced degradation of the films. Better PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres with respect to those prepared in vacuum. A stable green emission peak at 515 nm, attributed to 4f65d1→4f7 Eu2+ transitions were obtained with less intense peaks at 619 nm, which were attributed to transitions in Eu3+. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The CL intensity increased under prolonged electron bombardment during the removal of C due to electron stimulated surface chemical reactions (ESSCRs) on the surface of the SrAl2O4:Eu2+, Dy3+ thin films. The CL stabilized and stayed constant thereafter.  相似文献   

10.
A coating method with precipitating process was developed to reduce the particle size and to improve the particle dispersion of Y3Al5O12:Tb3+ phosphor prepared by sol-gel method. The particle morphology was observed by using SEM and TEM; and the particle size and its dispersion was measured by using laser scattering technique. Several coating materials were tested. Among them, Al2(SiO3)3 coating not only reduced the particle size from several micrometers to ∼1 μm and improved the particle dispersion, but also well kept luminescent intensities and improved the duration of the phosphor under the bombardment of cathode ray. The mechanism of the particle size reduction was proposed.  相似文献   

11.
Long afterglow Sr3MgSi2O8: Eu, Dy phosphor with high brightness was prepared by sintering at high temperature and weak reductive atmosphere. The luminescent properties of this photoluminescent pigment were studied systematically by investigating concentration effects. The analytical results indicated that the main emission peaks appear at 482 nm. The excitation and emission spectra of this phosphor show that both of them are broadband. This is ascribed to the 4f7→4f65d1 transition of Eu2+ in the pigment matrix, which is in good agreement with the calculated value of 470 nm, and implies that luminescent centers Eu2+ occupy the deca-coordinated Sr2+ sites with the host of Sr3MgSi2O8.  相似文献   

12.
Single-phased Sr3B2SiO8:Eu3+ phosphor was prepared by a solid-state method at 1020 °C. The luminescence spectra showed that Sr3B2SiO8:Eu3+ phosphor can be effectively excited by near ultraviolet light (393 nm) and blue light (464 nm). When excited at 393 or 464 nm Sr3B2SiO8:Eu3+ exhibited the main emission peaks at 611 and 620 nm, which resulted from the supersensitive 5D07F2 transition of Eu3+. The luminescence intensity of Sr3B2SiO8:Eu3+ at 611 and 620 nm reached the maximum when the doping content of Eu3+ was 4.5 mol%. Its chromaticity coordinates (0.646, 0.354) were very close to the NTSC standard values (0.67, 0.33). Thus, Sr3B2SiO8:Eu3+ is considered to be an efficient red-emitting phosphor for long-UV InGaN-based light-emitting diodes.  相似文献   

13.
Structures of several premixed ethylene-oxygen-argon rich flat flames burning at 50 mbar have been established by using molecular beam mass spectrometry in order to investigate the effect of CO2, or NH3, or H2O addition on species concentration profiles. The aim of this study is to examine the eventual changes of profiles of detected hydrocarbon intermediates which could be considered as soot precursors (C2H2, C4H2, C5H4, C5H6, C6H2, C6H4, C6H6, C7H8, C6H6O, C8H6, C8H8, C9H8 and C10H8). The comparative study has been achieved on four flames with an equivalence ratio (f) of 2.50: one without any additive (F2.50), one with 15% of CO2 replacing the same quantity of argon (F2.50C), one with 3.3% of NH3 in partial replacement of argon (F2.50N) and one with 13% of H2O in replacement of the same quantity of argon (F2.50H). The four flat flames have similar final flame temperatures (1800 K).CO2, or NH3, or H2O addition to the fresh gas inlet causes a shift downstream of the flame front and thus flame inhibition. Endothermic processes CO2 + H = CO + OH and H2O + H = H2 + OH are responsible of the reduction of the hydrocarbon intermediates in the CO2 and H2O added flames through the supplementary formation of hydroxyl radicals. It has been demonstrated that such processes begin to play at the end of the flame front and becomes more efficient in the burnt gases region.The replacement of some Ar by NH3 is responsible only for a slight decrease of the maximum mole fraction of C2H2, but NH3 becomes much more efficient for C4H2 and C5 to C10 species. Moreover, the efficiency of NH3 as a reducing agent of C5 to C10 intermediates is larger than that of CO2 and H2O for equal quantities added.  相似文献   

14.
A novel and efficient method of providing moisture resistance of inorganic particles such as divalent europium activated strontium aluminate phosphors (Sr4Al14O25:Eu2+/Dy3+) was developed by firing the phosphor in the presence of appropriate amount of ammonium fluoride at a temperature of 600-700 °C. Scanning electron microscopy, X-ray diffraction, FT-IR, EDAX and Photoluminescence measurements were carried out to characterize the uncoated and coated samples. The pH measurements were carried out for the water resistivity measurements. The phosphor particles became coated with a moisture-impervious thin coating that did not suppress the luminescence of the phosphor and can withstand complete immersion in water for long periods of time, showing very high water resistivity.  相似文献   

15.
Ni3–xCr2x/3(PO4)2 (x=0 and 0.02) microcrystalline powders were obtained as single phases via a modified sol–gel Pechini-type in situ polymerizable complex method. The samples were characterized using scanning electron microscopy, X-ray diffraction, cathodoluminescence (CL), and thermoluminescence (TL) techniques. We found that Cr3+ doping modified the average particle and distribution. The mean particle size was 0.441 μm for Ni3(PO4)2 and 0.267 μm for Ni2.98Cr0.013(PO4)2. The results also reveal that Cr3+ doping notably enhanced the CL and TL UV-blue emission.  相似文献   

16.
The structures of LiTiPO5 and LiTi2(PO4)3, as well as the possibility of oxygen vacancies formation in the systems are studied by first-principles calculations. It is found that oxygen vacancies can be formed in LiTiPO5 and LiTi2(PO4)3 under oxygen poor condition. The formation of oxygen vacancies introduce a defect band within their band gaps, which is expected to improve the electronic conductivity of LiTiPO5 and LiTi2(PO4)3 significantly. Meanwhile, a great concentration of oxygen vacancies may increase the discharge voltage of LiTiPO5 and LiTi2(PO4)3.  相似文献   

17.
Auger electron/X-ray photoelectron and cathodoluminescent (CL) spectroscopic studies were conducted on pulsed laser deposited SrAl2O4:Eu2+,Dy3+ thin films and the correlation between the surface chemical reactions and the decrease in the CL intensity was determined. The Auger electron and the CL data were collected simultaneously in a vacuum chamber either maintained at base pressure or backfilled with oxygen gas. The data were collected when the films were irradiated for 14 h with 2 keV electrons. The CL emission peak attributed to the 4f65d1 → 4f7 transitions was observed at ∼521 nm and the CL intensity of the peaks degraded at different rates in different vacuum conditions. X-ray photoelectron spectroscopy (XPS) data collected from degraded films suggest that strontium oxide (SrO) and aliminium oxide (Al2O3) were formed on the surface of the film as a result of electron stimulated surface chemical reaction (ESSCR).  相似文献   

18.
The red phosphors NaY1−xEux(WO4)2 with different concentrations of Eu3+ were synthesized via the combustion synthesis method. As a comparison, NaEu(WO4)2 was prepared by the solid-state reaction method. The phase composition and optical properties of as-synthesized samples were studied by X-ray powder diffraction and photoluminescence spectra. The results show that the red light emission intensity of the combustion synthesized samples under 394 nm excitation increases with increase in Eu3+ concentrations and calcination temperatures. Without Y ions doping, the emission spectra intensity of the NaEu(WO4)2 phosphor prepared by the combustion method fired at 900 °C is higher than that prepared by the solid-state reaction at 1100 °C. NaEu(WO4)2 phosphor synthesized by the combustion method at 1100 °C exhibits the strongest red emission under 394 nm excitation and appropriate CIE chromaticity coordinates (x=0.64, y=0.33) close to the NTSC standard value. Thus, its excellent luminescence properties make it a promising phosphor for near UV InGaN chip-based red-emitting LED application.  相似文献   

19.
This report presents the luminescence properties of Ce3+ and Pr3+ activated Sr2Mg(BO3)2 under VUV-UV and X-ray excitation. The five excitation bands of crystal field split 5d states are observed at about 46 729, 44 643, 41 667, 38 314 and 29 762 cm−1 (i.e. 214, 224, 240, 261 and 336 nm) for Ce3+ in the host lattice. The doublet Ce3+ 5d→4f emission bands were found at about 25 840 and 24 096 cm−1 (387 and 415 nm). The influence of doping concentration and temperature on the emission characteristics and the decay time of Ce3+ in Sr2Mg(BO3)2 were investigated. For Pr3+ doped samples, the lowest 5d excitation band was observed at about 42017 cm−1 (238 nm), a dominant band at around 35714 cm−1 (280 nm) and two shoulder bands were seen in the emission spectra. The excitation and emission spectra of Ce3+ and Pr3+ were compared and discussed. The X-ray excited luminescence studies show that the light yields are ∼3200±230 and ∼1400±100 photons/MeV of absorbed X-ray energy for the samples Sr1.86Ce0.07Na0.07Mg(BO3)2 and Sr1.82Pr0.09Na0.09Mg(BO3)2 at RT, respectively.  相似文献   

20.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号