首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this work, the structural and magnetic properties of Tb3 (Fe28−xCox) V1.0 (x=0, 3, 6) compounds have been investigated. The structural characterization of compounds by X-ray powder diffraction is an evidence for a monoclinic Nd3(Fe, Ti)29-type structure (A2/m space group). The refined lattice parameters a and b (but not c) and the unit cell volume V, obtained from the XRD data by the Rietveld method, are found to decrease with increasing Co concentration. The unit cell parameters behavior has been attributed to the smaller Co atoms and a preferential substitution of Fe by Co. The anisotropy field (Ha) as well as critical field (Hcr) was measured using the singular point detection (SPD) technique from 5 to 300 K in a pulsed magnetic field of up to 30 T. At T=5 K, a FOMP of type 2 was observed for all samples and persists at all temperatures up to 300 K. For sample x=0, Hcr=10.6 and 2.0 T at 5 and 300 K, respectively, is equal to that reported earlier. The occurrence of canting angles between the magnetic sublattices during the magnetization process instead of high-order anisotropy contributions (at room temperature are usually negligible) has been considered to explain the survival of the FOMP at room temperature. The anisotropy and critical fields behave differently for samples with x=0, 3 compared with x=6. The observed behavior has been related to the fact that the Co substitution for Fe takes place with a preferential entrance in the inequivalent crystallographic sites of the 3:29 structure. The contribution of the Tb-sublattice in the Tb3(Fe, V)29 compound with uniaxial anisotropy has been scaled from the anisotropy field measured on a Y3(Fe, V)29 single crystal with easy plane anisotropy.  相似文献   

2.
The Tb0.29(Dy1−xPrx)0.71Fe1.97 (x=0, 0.1, 0.2 and 0.3) alloys were prepared by directional solidification method. The orientation, magnetostriction λ, Curie temperature Tc and microstructure of alloys were characterized by XRD, standard resistant strain gauge technique, VSM and SEM-EDS. The results reveal that the alloys have a preferred orientation of 〈1 1 0〉 and 〈1 1 3〉 direction when x>0. With the increase in Pr content, the Tc of alloys decreases gradually and the non-cubic phase appears, resulting in the decline of λ dramatically, from 1935.2×10−6 for x=0 to 695.9×10−6 for x=0.3 at a compressive stress of 6 MPa and a magnetic field of H=240 kA m−1.  相似文献   

3.
The structure and magnetostriction of the (Tb1−xDyx)0.2Pr0.8(Fe0.4Co0.6)1.88C0.05 intermetallic compounds (0≤x≤1) were studied by X-ray diffraction and magnetic measurements. The formation of an approximate single Laves phase with a MgCu2-type cubic structure was observed in this series of compounds. It was found that the Curie temperature and the saturation magnetization of the compounds would decrease with increase in the Dy content up to x=1. The magnetostriction λa (λa=λ-λ) gently rises when x≤0.6, and follows with a precipitous fall when x exceeds 0.6, with the highest value of λa being reached in the compounds with x=0.6. The magnetostriction of all the samples was observed to approach their own saturation in the magnetic fields higher than 4 kOe. This indicates that the addition of a small amount of Dy could effectively improve the low-field magnetostriction of the Tb0.2Pr0.8(Fe0.4Co0.6)1.88C0.05 compounds, which could become a kind of promising magnetostrictive material.  相似文献   

4.
Fe1−xCox alloy microparticles with size 3-5 μm and novel flower-like shapes were prepared by a simple low temperature reduction method. The electromagnetic properties for the paraffin matrix composites containing Fe1−xCox alloy microparticles were measured using a vector network analyzer in the 2-18 GHz frequency range. As a consequence of large surface- and shape-anisotropy energy for the flower-like shaped 3D microstructures, the strong natural resonance around 8-12 GHz and remarkable dielectric relaxation were observed in the complex permittivity and permeability spectrum, which are dominant in the enhanced electromagnetic wave absorption (EMA) performance. It was found that both the electromagnetic parameters of complex permittivity and permeability and the intensity and location of absorption band were remarkably dependent on the Co/Fe molar ratio. The enhanced EMA performance was obtained in these Fe1−xCox-paraffin (x=0.4, 0.5, and 0.6) composites system. For the Fe0.5Co0.5 alloy, the reflection loss (RL) exceeding −20 dB was obtained in the broad frequency range of 5.4-18 GHz with a thin sample thickness of between 1.0 and 2.9 mm. In particular, an optimal RL of −59 dB was obtained at 3.61 GHz with a thin thickness of 3.6 mm for the Fe0.4Co0.6 sample. The Fe1−xCox alloy microparticles may be attractive candidates for applications of microwave absorption materials with a wide frequency range and strong absorption in the high frequency region.  相似文献   

5.
Experimental results on the thermal expansion and magnetostriction of YFe12−xVx (1.5≤x≤3.5) alloys are reported. The results show that the anisotropic magnetostriction (Δλ) at a finite field (1.5 T) increases with increasing vanadium content in the range of x<2. But for x>2, a decrease in the magnetic anisotropy with increasing vanadium content causes a decrease in the saturation values of Δλ. In addition, the thermal expansion coefficient becomes a minimum for x≈2. Experimental curves exhibit that the forced volume magnetostriction (ΔV/V) is positive and increases linearly with the applied field at high fields. But in the low field region (≤0.5 T), a minimum appears in the isothermal curves of ΔV/V around the saturation field. The results are explained by considering the influence of vanadium content on the magnetization anisotropy of YFe12−xVx compounds.  相似文献   

6.
The structure, magnetic and magnetostrictive properties of Sm0.88Nd0.12(Fe1−xCox)1.93 (0≤x≤1.0) alloys have been investigated. The alloys have the cubic MgCu2 structure over the whole composition range and the lattice parameter a decreases with increasing x. For 0≤x≤0.2, substitution of Co for Fe slightly increases the saturation magnetization Ms and Curie temperature Tc, while further substitution causes a decrease in both Ms and Tc. The spin reorientation is observed, and a phase diagram for the spin configurations of the Sm0.88Nd0.12(Fe1−xCox)1.93 system is determined. The spontaneous magnetostriction λ111 increases as x is increased, while a monotonic decrease of the saturation magnetostriction λs with x originates from the increase of λ100 with opposite sign to that of λ111, which may be caused by the filling of the d band due to Co substitution.  相似文献   

7.
Core-shell Co(1−x)NixFe2O4/polyaniline nanoparticles, where the core was Co(1−x)NixFe2O4 and the shell was polyaniline, were prepared by the combination of sol-gel process and in-situ polymerization methods. Nanoparticles were investigated by Fourier transform spectrometer, X-ray diffraction diffractometer, Scanning electron microscope, Differential thermal analysis and Superconductor quantum interference device. The results showed that the saturation magnetization of pure Co(1−x)NixFe2O4 nanoparticles were 57.57 emu/g, but Co(1−x)NixFe2O4/polyaniline composites were 37.36 emu/g. It was attributed to the lower content (15 wt%), smaller size and their uneven distribution of Co(1−x)NixFe2O4 nanoparticles in the final microsphere composites. Both Co(1−x)NixFe2O4 and PANI/Co(1−x)NixFe2O4 showed superparamagnetism.  相似文献   

8.
Structural, magnetic properties and magnetostriction studies of Sm1−xNdxFe1.55 (0≤x≤0.56) alloys have been performed. X-ray diffraction analysis confirms the presence of single cubic Laves phase in Sm1-xNdxFe1.55 alloys with 0≤x≤0.48. The lattice parameter of alloys increases linearly with increase in Nd content while the Curie temperature behaves in the opposite way. The alloy x=0.08 exhibits a giant magnetostriction value (λ-λ) of −2187 ppm at a magnetic field of 12 kOe due to the anisotropy compensation between Sm3+ and Nd3+ ions.  相似文献   

9.
The spontaneous volume magnetostriction is calculated for Y(Fe1?xCox)2 and Zr(Fe1?xCox)2 in the simple itinerant-electron model. The density of states for various compositions is calculated by the recursion method. The calculated results on the composition dependence of the spontaneous volume magnetostriction are shown to be consistent with the experimental ones.  相似文献   

10.
(In1−xFex)2O3 (x = 0.02, 0.05, 0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1−xFex)2O3 powders as a function of Fe concentration and annealing temperature. The X-ray diffraction and high-resolution transmission electron microscopy results confirmed that there were not any Fe or Fe oxide secondary phases in vacuum-annealed (In1−xFex)2O3 samples and the Fe element was incorporated into the indium oxide lattice by substituting the position of indium atoms. The X-ray photoelectron spectroscopy revealed that both Fe2+ and Fe3+ ions existed in the samples. Magnetic measurements indicated that all samples were ferromagnetic with the magnetic moment of 0.49-1.73 μB/Fe and the Curie temperature around 783 K. The appearance of ferromagnetism was attributed to the ferromagnetic coupling of Fe2+ and Fe3+ ions via an electron trapped in a bridging oxygen vacancy.  相似文献   

11.
The thermal expansion and magnetostriction of HoFe11−xCoxTi (x=0, 0.3, 0.7 and 1) intermetallic compounds were measured, using the strain gauge method in the temperature range 77–590 K under applied magnetic fields up to 1.5 T. Results show that for samples with x=0 and 0.3, both linear thermal expansion and linear thermal expansion coefficient exhibit anomalies below the Curie temperature. Below room temperature, the spontaneous volume magnetostriction decreases with Co content. For all compounds studied, the anisotropic magnetostriction shows similar behaviour in the measured temperature range. The magnetostriction compensation occurs above room temperature in all samples. The volume magnetostriction shows a linear dependence on the applied field and by approaching the Curie temperature this trend changes to parastrictive behaviour. The results of the spontaneous magnetostriction are discussed based on the local magnetic moment model. The contribution of magnetostriction attributed to the magnetic sublattices R and T (Fe or Co) is discussed.  相似文献   

12.
The structures and magnetocaloric effects of (Gd1−xTbx)Co2 (x=0, 0.25, 0.4, 0.5, 0.6, 0.7, 0.8, and 1) pseudobinary compounds were investigated by X-ray powder diffraction and magnetic properties measurement. The results show that the Tc of the alloy is near room temperature when X=0.6. The magnetic entropy changes of the compounds increase from 1.7 to 3.6 J/kg K with increasing the content of Tb under an applied field up to 2 T. All the compounds exhibit second order magnetic change. As a result, the values of their ΔSM are lower than that of some large magnetocaloric effect materials.  相似文献   

13.
The effects of partial substitution of Mn for Co on the thermoelectric properties of Ca3MnxCo4−xO9 (x=0, 0.03, 0.9), prepared by sol-gel process, were investigated at the temperatures from 380 K down to 5 K. The results indicate that the substitution of Mn for Co results in increase in thermopower at temperatures >∼80 K, and substantial (23-31% at 300 K) decrease in lattice thermal conductivity in the whole temperature range investigated. The temperature behavior of ZT suggests that Ca3MnxCo4−xO9 with light Mn substitution would be a promising candidate for high-temperature thermoelectric applications.  相似文献   

14.
CoxFe1−x nanowire arrays with various diameters and different composition were fabricated by ac electrodeposition using porous alumina template. Coercivity along the easy axis reaches to a maximum at 2330 Oe, for CoxFe1−x nanowires containing about 40 at% Co. The crystalline structure of the nanowires was concentration-independent and shows a bcc structure. The critical diameter for transition from coherent rotation to curling mode is 35 nm for CoFe containing less than 40 at% Co while it is 30 nm for those with more than 40 at% Co. Optimizing the magnetic properties of CoFe with different Co content was seen to be dependent on the diameter of nanowires. For 25 nm diameter, the optimum was shown below 50 at% Co while it was seen above 50 at% for nanowires with 50 nm diameter. The angular dependence of the coercivity with nanowires diameter were also studied.  相似文献   

15.
We have studied the effect of Fe substitution on magnetic and magnetocaloric properties in La0.7Sr0.3Mn1−xFexO3 (x=0.05, 0.07, 0.10, 0.15, and 0.20) over a wide temperature range (T=10-400 K). It is shown that substitution by Fe gradually decreases the ferromagnetic Curie temperature (TC) and saturation magnetization up to x=0.15 but a dramatic change occurs for x=0.2. The x=0.2 sample can be considered as a phase separated compound in which both short-range ordered ferromagnetic and antiferromagnetic phases coexist. The magnetic entropy change (−ΔSm) was estimated from isothermal magnetization curves and it decreases with increase of Fe content from 4.4 J kg−1 K−1 at 343 K (x=0.05) to 1.3 J kg−1 K−1 at 105 K (x=0.2), under ΔH=5 T. The La0.7Sr0.3Mn0.93Fe0.07O3 sample shows negligible hysteresis loss, operating temperature range over 60 K around room temperature with refrigerant capacity of 225 J kg−1, and magnetic entropy of 4 J kg−1 K−1 which will be an interesting compound for application in room temperature refrigeration.  相似文献   

16.
Polarized neutron reflectometry was used to investigate the amorphous multilayer nanostructures [(Co45Fe45Zr10)x(Al2O3)100−x/a-Si:H]m, whose magnetic properties are dependent on the concentration of the magnetic constituent (x=34, 47 and 60 at%) as well as on the thicknesses of the metal-dielectric (Co45Fe45Zr10)x(Al2O3)100−x and semiconductor a-Si:H layers. The average magnetization of the individual magnetic layer is found to be inhomogeneous with the magnetically active central part and two magnetically dead parts at the interfaces.  相似文献   

17.
The effect of Pr substitution for Dy on the magnetization, magnetostriction, anisotropy and spin reorientation of a series of Tb0.3Dy0.7−xPrx(Fe0.9Al0.1)1.95 alloys (x=0, 0.1, 0.20, 0.25, 0.30, 0.35) at room temperature has been investigated. It was found that the magnetization and magnetostriction of the homogenized Tb0.3Dy0.7−xPrx(Fe0.9Al0.1)1.95 alloys decreases drastically with increasing x and the magnetostrictive effect disappears for x>0.2, but the spontaneous magnetostriction λ111 increases approximately linearly with increasing x. Moreover, the magnetostriction exhibits slightly bigger value at x=0.1 than the free alloys and is saturated more easily with the magnetic field H, showing that a small amount of Pr substitution is beneficial to a decrease in the magnetocrystalline anisotropy. The analysis of the Mössbauer spectra indicated that the easy magnetization direction in the {1 1 0} plane deviates slightly from the main axis of symmetry with Pr concentration x, namely spin reorientation. Comparing with the Al substitution, the effect of Pr substitution for Dy on the spin reorientation is smaller.  相似文献   

18.
Nanocrystalline Co2xNi0.5−xZn0.5−xFe2O4 (x=0−0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.  相似文献   

19.
MCu2O3 (M=Ca and Co) system has two-leg spin ladder structure similar to that of the prototype SrCu2O3 system except that the rungs are buckled with an angle of 123° and 105° for CaCu2O3 and CoCu2O3 compounds, respectively. We have synthesized powder samples of (Ca1−xCox)Cu2O3 (x=0.00-1.00) by the solid state reaction method and their structural and magnetic properties have been investigated. All the synthesized compounds crystallize in orthorhombic structure with space group Pmmn. Lattice parameters of (Ca1−xCox)Cu2O3 decrease with the increase in Co content. DC magnetic susceptibility χ(T) results of the end products CaCu2O3 and CoCu2O3 show antiferromagnetic transition (TN) at 27 and 215 K, respectively. Co doping into (Ca1−xCox)Cu2O3 enhances its TN systematically with increasing Co concentration. The χ(T) of CoCu2O3 shows a broad transition with the peak temperature around 215 K and it was found to be field independent up to 90 kOe. The ambiguity concerning the transition was ruled out by recording the temperature dependent X-ray diffraction pattern on CoCu2O3 system, which indicated that there is no structural transition in the investigated temperature range of 115-300 K. Further, specific heat measurement on CoCu2O3 confirms the magnetic phase transition by the appearance of a sharp peak at 215 K.  相似文献   

20.
Microstructure, revealed by X-ray diffraction, transmission electron microscopy and Mössbauer spectroscopy, and magnetic properties such as magnetic susceptibility, its disaccommodation, core losses and approach to magnetic saturation in bulk amorphous (Fe0.61Co0.10Zr0.025Hf0.025Ti0.02W0.02B0.20)100−xYx (x=0, 2, 3 or 4) alloys in the as-cast state and after the annealing in vacuum at 720 K for 15 min. are studied. The investigated alloys are ferromagnetic at room temperature. The average hyperfine field induction decreases with Y concentration. Due to annealing out of free volumes its value increases after the heat treatment of the samples. The magnetic susceptibility and core losses point out that the best thermal stability by the amorphous (Fe0.61Co0.10Zr0.025Hf0.025Ti0.02W0.02B0.20)97Y3 alloy is exhibited. Moreover, from Mössbauer spectroscopy investigations it is shown that the mentioned above alloy is the most homogeneous. The atom packing density increases with Y concentration, which is proved by the magnetic susceptibility disaccommodation and approach to magnetic saturation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号