首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The potential energy surfaces for Cl(2)CS dissociation into ClCS + Cl in the five lowest electronic states have been determined with the combined complete active space self-consistent field (CASSCF) and MR-CI method. The wavelength-dependent photodissociation dynamics of Cl(2)CS have been characterized through computed potential energy surfaces, surface crossing points, and CASSCF molecular dynamics calculations. Irradiation of the Cl(2)CS molecules at 360-450 nm does not provide sufficient internal energy to overcome the barrier on S(1) dissociation, and the S(1)/T(2) intersection region is energetically inaccessible at this wavelength region; therefore, S(1) --> T(1) intersystem crossing is the dominant process, which is the main reason S(1)-S(0) fluorescence breaks off at excess energies of 3484-9284 cm(-1). Also, the S(1) --> T(2) intersystem crossing process can take place via the S(1)-T(2) vibronic interaction in this range of excess energies, which is mainly responsible for the quantum beats observed in the S(1) emission. Both S(2) direct dissociation and S(2) --> S(3) internal conversion are responsible for the abrupt breakoff of S(2)-S(0) fluorescence at higher excess energies. S(2) direct dissociation leads to the formation of the fragments of Cl(X(2)P) + ClCS(A(2)A' ') in excited electronic states, while S(2) --> S(3) internal conversion followed by direct internal conversion to the ground electronic state results in the fragments produced in the ground state.  相似文献   

2.
We studied the 1(2)A' '(X2A' '), 1(2)A' (A2A'), 2(2)A' ' (B2A' '), and 2(2)A' (C2A') states of the C2H3Cl+ ion using the complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) methods. For the four ionic states, we calculated the equilibrium geometries, adiabatic (T0) and vertical (Tv) excitation energies, and relative energies (Tv') at the geometry of the molecule at the CASPT2 level and the Cl-loss dissociation potential energy curves (PECs) at the CASPT2//CASSCF level. The computed oscillator strength f value for the X2A' ' <-- A2A' transition is very small, which is in line with the experimental fact that the A state has a long lifetime. The CASPT2 geometry and T0 value for the A2A' state are in good agreement with experiment. The CASPT2 Tv' values for the A2A', B2A' ', and C2A' states are in good agreement with experiment. The Cl-loss PEC calculations predict that the X2A' ', A2A', and C2A' states correlate to C2H3+ (XA1) and the BA' ' state to C2H3+ (1A' ') (the B2A' ' and C2A' PECs cross at R(C-Cl) approximately 2.24 A). Our calculations indicate that at 357 nm the X2A' ' state can undergo a transition to B2A' ' followed by a predissociation of B2A' ' by the repulsive C2A' state (via the B/C crossing), leading to C2H3+ (X1A1), and therefore confirm the experimentally proposed pathway for the photodissociation of X2A' ' at 357 nm. Our CASPT2 D0 calculations support the experimental fact that the X state does not undergo dissociation in the visible spectral region and imply that a direct dissociation of the A state to C2H3+ (X1A1) is energetically feasible.  相似文献   

3.
采用多参考态方法, 在CASPT2//CASSCF/6-311+G(2df, 2p) 水平上计算了乙醇醛(HOCH2CHO)分子在三个最低电子态(S0、S1和T1)上驻点的电子结构和解离势能面。结合势能面交叉点,探讨了HOCH2CHO与波长有关的光解离机理,分析了可能的光解离产物。结果表明, 在实验光解波长240 – 400 nm的激发下,HOCH2CHO分子主要发生S1态上的解离反应或通过S0和S1态之间的振动相互作用驰豫到基态,随之发生基态解离反应。C-C键断裂生成基态光解产物HOCH2 (2A′)+ HCO (2A′)是最主要的反应途径;而在一定波长下,生成CH3OH + CO的基态协同反应、脱醛基氢及脱羟基通道都是能量上可行的反应途径。本文的计算结果和实验观察一致。  相似文献   

4.
The photochemical behavior of the protonated simplest nitrosamine [NH2NO-H](+) has been addressed by means of the CASPT2//CASSCF methodology in conjunction with the ANO-L basis sets. The relative stability of the different tautomers, namely, (1) NH2NOH(+), (2) NH3NO(+), and (3) NH2NHO(+), has been considered, and the corresponding tautomerization transition states have been characterized. With respect to the most chemically relevant species, it has been found that NH2NOH(+) corresponds to a bound structure, while NH3NO(+) corresponds to an adduct between NH3 and NO(+) at both CASSCF and CASPT2 levels of theory. Vertical transition calculations and linear interpolations on the homolytic dissociation of NH3NO(+) in combination with previous results on neutral nitrosamine [J. Chem. Phys. 2006, 125, 164311] and neutral N,N-dimethylnitrosamine [J. Org. Chem. 2007, 72, 4741] indicate that, in acidic diluted solutions, the protonation of nitrosamine takes place on the excited surface. The N-N dissociation channels have been studied both in ground and first excited singlet state. An S1/S0 conical intersection is found to be responsible for the photostability of NH2NOH(+). On the contrary, NH3NO(+) is photochemically unstable as its first excited state is purely dissociative. The latter species is characterized by a twofold reactivity: the formation of nitrosyl cation (NO(+)) in the ground state and the photorelease of physiologically relevant nitric oxide radical (NO) in its first excited state.  相似文献   

5.
Electronic states of the C6H5F+ ion have been studied within C2v symmetry by using the complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) methods in conjunction with an atomic natural orbital basis. Vertical excitation energies (Tv) and relative energies (Tv') at the ground-state geometry of the C6H5F molecule were calculated for 12 states. For the five lowest-lying states, 1(2)B1, 1(2)A2, 2(2)B1, 1(2)B2, and 1(2)A1, geometries and vibrational frequencies were calculated at the CASSCF level, and adiabatic excitation energies (T0) and potential energy curves (PEC) for F-loss dissociations were calculated at the CASPT2//CASSCF level. On the basis of the CASPT2 T0 calculations, we assign the X, A, B, C, and D states of the ion to 1(2)B1, 1(2)A2, 2(2)B1, 1(2)B2, and 1(2)A1, respectively, which supports the suggested assignment of the B state to (2)(2)B1 by Anand et al. based on their experiments. Our CASPT2 Tv and Tv' calculations and our MRCI T0, Tv, and Tv' calculations all indicate that the 2(2)B1 state of C6H5F+ lies below 1(2)B2. By checking the relative energies of the asymptote products and checking the fragmental geometries and the charge and spin density populations in the asymptote products along the CASPT2//CASSCF PECs, we conclude that the 1(2)B1, 1(2)B2, and 1(2)A1 states of C6H5F+ correlate with C6H5+ (1(1)A1) + F (2P) (the first dissociation limit). The energy increases monotonically along the 1(2)B1 PEC, and there are barriers and minima along the 1(2)B2 and 1(2)A1 PECs. The predicted appearance potential value for C6H5+ (1(1)A1) is very close to the average of the experimental values. Our CASPT2//CASSCF PEC calculations have led to the conclusion that the 1(2)A2 state of C6H5F+ correlates with the third dissociation limit of C6H5+ (1(1)A2) + F (2P), and a preliminary discussion is presented.  相似文献   

6.
The potential energy surfaces of the ground and valence excited states of both 3H-diazirine and diazomethane have been studied computationally by mean of the CASSCF method in conjunction with the cc-pVTZ basis set. The energies of the critical points found on such surfaces have been recomputed at the CASPT2/cc-pVTZ level. Additionally, ab initio direct dynamic trajectory calculations have been carried out on the S(1) and S(2) surfaces, starting each trajectory run at the region dominated by the conformational molecular rearrangement of diazomethane. It is found that both isomers are interconnected along a C(s)() reaction coordinate on each potential surface. Radiationless deactivation of the corresponding S(1) state of each isomer occurs through the same point on the surface, an S(1)/S(0) conical intersection. Thereafter, the system has enough energy to surmount the barrier which leads to dissociation products (CH(2) + N(2)) on S(0) state. Therefore, photoexcitation to S(1) state of either diazirine of diazomethane produces methylene in its lower singlet state on a very short time scale (ca. 100 fs). Furthermore, both isomers can generate excited singlet carbene when they are excited onto the S(2) surface; in this case, they lose the activation energy passing through another common S(2)/S(1) conical intersection and then proceed to dissociation into carbene and N(2) on the S(1) surface. For the special case of methylene, it rapidly experiences deexcitation to S(0) state.  相似文献   

7.
The mechanisms which are responsible for the radiationless deactivation of the npi* and pipi* excited singlet states of thymine have been investigated with multireference ab initio methods (the complete-active-space self-consistent-field (CASSCF) method and second-order perturbation theory with respect to the CASSCF reference (CASPT2)) as well as with the CC2 (approximated singles and doubles coupled-cluster) method. The vertical excitation energies, the equilibrium geometries of the 1npi*and 1pipi* states, as well as their adiabatic excitation energies have been determined. Three conical intersections of the S1 and S0 energy surfaces have been located. The energy profiles of the excited states and the ground state have been calculated with the CASSCF method along straight-line reaction paths leading from the ground-state equilibrium geometry to the conical intersections. All three conical intersections are characterized by strongly out-of-plane distorted geometries. The lowest-energy conical intersection (CI1) arises from a crossing of the lowest 1pipi* state with the electronic ground state. It is found to be accessible in a barrierless manner from the minimum of the 1pipi* state, providing a direct and fast pathway for the quenching of the population of the lowest optically allowed excited states of thymine. This result explains the complete diffuseness of the absorption spectrum of thymine in supersonic jets. The lowest vibronic levels of the optically nearly dark 1npi* state are predicted to lie below CI1, explaining the experimental observation of a long-lived population of dark excited states in gas-phase thymine.  相似文献   

8.
A CASPT2/CASSCF study has been carried out to investigate the mechanism of the photolysis of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) under direct and triplet-sensitized irradiation. By exploring the detailed potential energy surfaces including intermediates, transition states, conical intersections, and singlet/triplet crossing points, for the first excited singlet (S(1)) and the low-lying triplet states (T(1), T(2), and T(3)), we provide satisfactory explanations of many experimental findings associated with the photophysical and photochemical processes of DBO. A key finding of this work is the existence of a significantly twisted S(1) minimum, which can satisfactorily explain the envelope of the broad emission band of DBO. It is demonstrated that the S(1) (n-pi*) intermediate can decay to the T(1) (n-pi*) state by undergoing intersystem crossing (rather inefficient) to the T(2) (pi-pi*) state followed by internal conversion to the T(1) state. The high fluorescence yield and the extraordinarily long lifetime of the singlet excited DBO are due to the presence of relatively high barriers, both for intersystem crossing and for C-N cleavage. The short lifetime of the triplet DBO is caused by fast radiationless decay to the ground state.  相似文献   

9.
1 INTRODUCTION 2-Methylfuran belongs to the basic heteroaromatic compounds relevant to many fields of modern che- mistry, ranging from the study of natural products and biologically active substances to the develop- ment of building blocks for organic synthesis and conducting polymers[1]. Since the photochemistry ofR-furan was gradually recognized in 1960s[2~7], lots of interest has been aroused. Herein we only study one branch of photoche- mistry of R-furan: the isomerization of 2-methy…  相似文献   

10.
The photochemistry of N-nitrosodimethylamine after excitation to the S(1) and S(2) states has been studied with the complete active space self-consistent field method (CASSCF) and the second-order multiconfigurational perturbation theory (CASPT2). The calculated vertical transitions agree with the experiment: the S(0) --> S(1) transition occurs at 3.29 eV (f = 0.003 au), the S(0) --> S(2) transition at 5.30 eV (f = 0.17 au) and the first excited triplet state is computed at 2.48 eV. Solvent effects have been reproduced by means of PCM calculations. It is shown that excitation to S(1) and S(2) yields the same photoproducts: (CH(3))(2)N (1(2)B(1)) and NO (X(2)Pi). However, while on S1 the process is adiabatic, the process on S(2) implies an ultrafast decay through a planar S(2)/S(1) conical intersection. Our calculations are consistent with the reversibility of the N-N dissociation after irradiation at 363.5 nm and the observed dimethylamine radical reactions when irradiated at 248 nm, namely, H extrusion, a one-step process (41.3 kcal/mol), and methyl radical extrusion, a two-step process (44.0 kcal/mol and 31.5 kcal/mol). Finally, two more aspects are considered: (i) the topology of the T(1) surface where two minima have been found to correlate with the phosphorescence emission band and (ii) the influence of tautomerizations which is shown to be neglectable.  相似文献   

11.
The complete active space self-consistent field (CASSCF) method and multiconfigurational second-order perturbation theory (CASPT2) have been used to study the structures and spectra of oxyluciferins (OxyLH2). The ground and lowest-lying singlet excited states geometries have been optimized using CASSCF. CASPT2 has been used to predict relaxed emission energies. The focus is on the lowest-lying singlet excited states of the anionic keto and enol forms of OxyLH2(-1) at the optimized excited-state geometries. The planar keto and enol forms of OxyLH2(-1) are minima on both the S0 and the S1 potential energy surfaces. The twisted keto and enol forms of OxyLH2(-1) are transition states on the S0 and S1 potential energy surfaces. The S1 --> S0 fluorescence emission energies are in the range of 54.2-58.4 kcal/mol for the anionic planar keto forms of OxyLH2, and in the range of 55.7-63.2 kcal/mol for the anionic enol forms of OxyLH2. S0 and S1 potential energy surfaces and thus are not implicated in the emission spectra in the gas phase.  相似文献   

12.
In the present work, we mainly study dissociation of the C 2B1, D2A1, and E2B2 states of the SO2+ ion using the complete active‐space self‐consistent field (CASSCF) and multiconfiguration second‐order perturbation theory (CASPT2) methods. We first performed CASPT2 potential energy curve (PEC) calculations for S‐ and O‐loss dissociation from the X, A, B, C, D, and E primarily ionization states and many quartet states. For studying S‐loss predissociation of the C, D, and E states by the quartet states to the first, second, and third S‐loss dissociation limits, the CASSCF minimum energy crossing point (MECP) calculations for the doublet/quartet state pairs were performed, and then the CASPT2 energies and CASSCF spin‐orbit couplings were calculated at the MECPs. Our calculations predict eight S‐loss predissociation processes (via MECPs and transition states) for the C, D, and E states and the energetics for these processes are reported. This study indicates that the C and D states can adiabatically dissociate to the first O‐loss dissociation limit. Our calculations (PEC and MECP) predict a predissociation process for the E state to the first O‐loss limit. Our calculations also predict that the E2B2 state could dissociate to the first S‐ and O‐loss limits via the A2B2E2B2 transition. On the basis of the 13 predicted processes, we discussed the S‐ and O‐loss dissociation mechanisms of the C, D, and E states proposed in the previous experimental studies. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

13.
吴勇  薛英  谢代前 《化学学报》2006,64(2):99-103
采用量子化学从头算CASSCF和CASPT2方法对邻氯甲苯在低激发态上的光解机理进行了理论研究.研究结果表明,在266nm的光激发下邻氯甲苯可以激发到第一单重态上,然后存在两种可能的离解途径:一种是经过S1/S0交叉点内部转换驰豫到基态,然后甲基上的一个H转移形成邻-5-亚甲基-6-氯-1,3-环己二烯,进而C—Cl键断裂生成苄基;另一种是先后经过S1/T2和T2/T1交叉点驰豫到三重态,然后进行C—Cl键断裂,形成邻甲苯基.这两种途径具有相近的反应几率,与实验结果很吻合.  相似文献   

14.
The H(+) velocity map images from the ion-pair dissociation of H(2)S + hν → SH(-)(X(1)Σ(+), υ = 0, 1) + H(+) have been measured at the excitation energies 15.259, 15.395, and 15.547 eV, respectively. The experimental results show that most of the available energies are transformed into the translational energies. The angular distributions of the fragments SH(-)(X(1)Σ(+), υ = 0) indicate that the dissociation occurs via pure parallel transition with limiting anisotropy parameter of +2. Because the ion-pair dissociation usually occurs via the predissociation of Rydberg states, this suggests that the ion cores of the excited Rydberg states have linear geometries. The geometries and electronic structures of the linear H(2)S(+) have been calculated employing the quantum chemistry calculation method at the CASPT2/avqz level. The electronic structures for the ion-pair states have been calculated at the CASSCF/avtz level, which indicates that the equilibrium geometries of the ion-pair states have bent geometries.  相似文献   

15.
On the basis of an extensive ab initio electronic structure study of the ground and excited-state potential energy surfaces of the naphthalene radical cation (N*+), we propose a mechanism for its ultrafast nonradiative relaxation from the second excited state (D2) down to the ground state (D0), which could explain the experimentally observed photostability [Zhao, L.; Lian, R.; Shkrob I. A.; Crowell, R. A.; Pommeret, S.; Chronister, E. L.; Liu, A. D.; Trifunac, A. D. J. Phys. Chem. A., 2004, 108, 25]. The proposed photophysical relaxation pathway involves internal conversion from the D2 state down to the D0 state via two consecutive, accessible, sloped conical intersections (CIs). The two crossings, D0/D1 and D1/D2, are characterized at the complete active space self-consistent field (CASSCF) level. At this level of theory, the D0/D1 crossing is energetically readily accessible, while the D1/D2 CI appears too high in energy to be involved in internal conversion. However, the inclusion of dynamic correlation effects, via single point CASPT2 calculations including excitations out of the valence pi- and sigma-orbitals, lowers the D0 and D2 state energies with respect to D1. Extrapolations at the CASPT2 level predict that the D1/D2 crossing is then significantly lower in energy than with CASSCF indicating that with a higher-level treatment of dynamic correlation it may be energetically accessible following vertical excitation to D2. N*+ is proposed as one of the species contributing to a series of diffuse infrared absorption bands originating from interstellar clouds. Understanding the mechanism for photostability in the gas phase, therefore, has important consequences for astrophysics.  相似文献   

16.
Complete active space self-consistent-field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) calculations with atomic natural orbital basis sets were performed to investigate the S-loss direct dissociation of the 1 2Pi(X 2Pi), 2 2Pi(A 2Pi), 1 2Sigma+(B 2Sigma+), 1 4Sigma-, 1 2Sigma-, and 1 2Delta states of the OCS+ ion and the predissociations of the 1 2Pi, 2 2Pi, and 1 2Sigma+ states. Our calculations indicate that the S-loss dissociation products of the OCS(+) ion in the six states are the ground-state CO molecule plus the S+ ion in different electronic states. The CASPT2//CASSCF potential energy curves were calculated for the S-loss dissociation from the six states. The calculations indicate that the dissociation of the 1 4Sigma- state leads to the CO + S+ (4Su) products representing the first dissociation limit; the dissociations of the 1 2Pi, 1 2Sigma-, and 1 2Delta states lead to the CO + S+(2Du) products representing the second dissociation limit; and the dissociations of the 2 2Pi and 1 2Sigma+ states lead to the CO + S+(2Pu) products representing the third dissociation limit. Seams of the 1 2Pi-1 4Sigma-, 2 2Pi-1 4Sigma-, 2 2Pi-1 2Sigma-, 2 2Pi-1 2Delta, and 1 2Sigma(+)-1 4Sigma- potential energy surface intersections were calculated at the CASPT2 level, and the minima along the seams were located. The calculations indicate that within the experimental energy range (15.07-16.0 eV) the 2 2Pi(A 2Pi) state can be predissociated by 1 4Sigma- forming the S+(4Su) ion and can undergo internal conversion to 1 2Pi followed by the direct dissociation of 1 2Pi forming S+(2Du) and that within the experimental energy range (16.04-16.54 eV) the 1 2Sigma+(B 2Sigma+) state can be predissociated by 1 4Sigma- forming the S+(4Su) ion and can undergo internal conversion to 2 2Pi followed by the predissociation of 2 2Pi by 1 2Sigma- and 1 2Delta forming the S+(2Du) ion. These indications are in line with the experimental fact that both the 4Su and 2Du states of the S+ ion can be formed from the 2 2Pi and 1 2Sigma+ states of the OCS+ ion.  相似文献   

17.
Chen Y  Han J  Fang WH 《Inorganic chemistry》2012,51(9):4938-4946
In the present work, photoinduced O(2) evolution from the [Cp(2)Os-OH](+) complex in aqueous solution has been studied by the DFT, CASSCF, and CASPT2 methods. The CASPT2//CASSCF calculations predict that the S(3) state is initially populated and the subsequent deprotonation of [Cp(2)Os-OH](+) proceeds very easily along the T(1) pathway as a result of the efficient S(3) → T(1) intersystem crossing. It is found that the O-O bond is formed via the acid-base mechanism, which is different from the direct oxo-oxo coupling mechanism suggested in the experimental study. Formation of the O-O bond is the rate-determining step and has an activation energy and activation free energy of 81.3 and 90.4 kcal/mol, respectively. This is consistent with the low quantum yield observed for generating molecular oxygen upon irradiation at 350 nm (~ 82 kcal/mol). The O(2) release from an intermediate complex has to overcome a small barrier on the triplet pathway first and then pass through the triplet-singlet intersection, generating the O(2) molecules in either the lowest singlet or triplet state. The formed (3)O(2) molecule can be converted into the (1)O(2) molecule by the heavy atom effect in the Os complexes, which is probably the reason only the (1)O(2) molecule was detected experimentally.  相似文献   

18.
Bo-Zhen Chen  Ming-Bao Huang   《Chemical physics》2004,300(1-3):325-334
In the present theoretical work we have explored mechanisms of dissociation reactions of the vinyl radical in the A2A″ state (C2H3 (A2A″)) and examined possible pathways for nonadiabatic dissociation of C2H3 (A2A″) into C2H2 (X1Σg+). In the calculations we used the complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) methods in conjunction with the cc-pVDZ and cc-pVTZ basis sets. Mechanisms for the following three dissociation channels of C2H3 in the A2A″ state were explored: (1) C2H3 (A2A″) → C2H2 (trans, 3Au) + H, (2) C2H3 (A2A″) → C2H2 (cis, 3A2) + H, and (3) C2H3 (A2A″) → H2CC (3A2) + H. The CASSCF and CASPT2 potential energy curve calculations for the C2H3 (A2A″) dissociation channels (1)–(3) indicate that there is neither transition state nor intermediate for each of the channels. At the CASPT2//CASSCF/cc-pVTZ level, the dissociation energies for channels (1)–(3) are predicted to be 84.3, 91.1, and 86.9 kcal/mol, respectively. For a recently observed nonadiabatic dissociation of C2H3 (A2A″) into C2H2 (X1Σg+) + H [J. Chem. Phys. 111 (1999) 3783], two previously suggested internal conversion (IC) pathways were examined based on our CASSCF and CASPT2 calculations. Our preliminary CASSCF and CASPT2 calculations indicate that the assumed IC pathway via the twisted C2H3 (A2A) structure might be feasible. The CASSCF/cc-pVTZ geometry optimization and frequency analysis calculations were performed for the four C2v bridge structures in the 2B2, 2A2, 2B1, and 2A1 states along the pathways of the 12A (X2A), 12A″ (A2A″), 22A″, and 22A states of C2H3, respectively, and the CASPT2//CASSCF/cc-pVTZ energetic results indicate that the assumed IC pathway, via a C2v (2A2) structure and then 2A2/2A1 surface crossing, be not feasible since at their excitation wavelengths (327.4 and 366.2 nm) the C2v (2A2) structure could not be accessed.  相似文献   

19.
The ground state (S(0)) and lowest-energy triplet state (T(1)) potential energy surfaces (PESs) concerning the thermal and photochemical rearrangement of bicyclo[3.1.0]hex-3-en-2-one (8) to the ketonic tautomer of phenol (11) have been extensively explored using ab initio CASSCF and CASPT2 calculations with several basis sets. State T(1) is predicted to be a triplet pipi lying 66.5 kcal/mol above the energy of the S(0) state. On the S(0) PES, the rearrangement of 8 to 11 is predicted to occur via a two-step mechanism where the internal cyclopropane C-C bond is broken first through a high energy transition structure (TS1-S(0)()), leading to a singlet intermediate (10-S(0)()) lying 25.0 kcal/mol above the ground state of 8. Subsequently, this intermediate undergoes a 1,2-hydrogen shift to yield 11 by surmounting an energy barrier of only 2.7 kcal/mol at 0 K. The rate-determining step of the global rearrangement is the opening of the three-membered ring in 8, which involves an energy barrier of 41.2 kcal/mol at 0 K. This high energy barrier is consistent with the fact that the thermal rearrangement of umbellulone to thymol is carried out by heating at 280 degrees C. Regarding the photochemical rearangement, our results suggest that the most efficient route from the T(1) state of 8 to ground state 11 is the essentially barrierless cleavage of the internal cyclopropane C-C bond followed by radiationless decay to the S(0) state PES via intersystem crossing (ISC) at a crossing point (S(0)()/T(1)()-1) located at almost the same geometry as TS1-S(0)(), leading to the formation of 10-S(0)() and the subsequent low-barrier 1,2-hydrogen shift. The computed small spin-orbit coupling between the T(1) and S(0) PESs at S(0)()/T(1)()-1 (1.2 cm(-)(1)) suggests that the ISC between these PESs is the rate-determining step of the photochemical rearrangement 8 --> 11. Finally, computational evidence indicates that singlet intermediate 10-S(0)() should not be drawn as a zwitterion, but rather as a diradical having a polarized C=O bond.  相似文献   

20.
The mechanisms that are responsible for the rapid deactivation of the (1)npi and( 1)pipi excited singlet states of the 9H isomer of adenine have been investigated with multireference ab initio methods (complete-active-space self-consistent-field (CASSCF) method and second-order perturbation theory based on the CASSCF reference (CASPT2)). Two novel photochemical pathways, which lead to conical intersections of the S(1) excited potential-energy surface with the electronic ground-state surface, have been identified. They involve out-of-plane deformations of the six-membered aromatic ring via the twisting of the N(3)C(2) and N(1)C(6) bonds. These low-lying conical intersections are separated from the minimum energy of the lowest ((1)npi) excited state in the Franck-Condon region by very low energy barriers (of the order of 0.1 eV). These properties of the S(1) and S(0) potential-energy surfaces explain the unusual laser-induced fluorescence spectrum of jet-cooled 9H-adenine, showing sharp structures only in a narrow energy interval near the origin, as well as the extreme excess-energy dependence of the lifetime of the singlet excited states. It is suggested that internal-conversion processes via conical intersections, which are accessed by out-of-plane deformation of the six-membered ring, dominate the photophysics of the lowest vibronic levels of adenine in the gas phase, while hydrogen-abstraction photochemistry driven by repulsive (1)pisigma states may become competitive at higher excitation energies. These ultrafast excited-state deactivation processes provide adenine with a high degree of intrinsic photostability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号