首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Dark soliton solutions for space-time fractional Sharma–Tasso–Olver and space-time fractional potential Kadomtsev–Petviashvili equations are determined by using the properties of modified Riemann–Liouville derivative and fractional complex transform. After reducing both equations to nonlinear ODEs with constant coefficients, the tanh ansatz is substituted into the resultant nonlinear ODEs. The coefficients of the solutions in the ansatz are calculated by algebraic computer computations. Two different solutions are obtained for the Sharma–Tasso–Olver equation as only one solution for the potential Kadomtsev–Petviashvili equation. The solution profiles are demonstrated in 3D plots in finite domains of time and space.  相似文献   

2.
《中国物理 B》2021,30(7):77406-077406
The influence of the off-resonant circularly polarized light on the Josephson current in the time-reversal broken superconducting Weyl semimetal junctions is investigated by using the Bogoliubov–de Gennes equation and the transfer matrix approach. Both the zero momentum BCS pairing states and the finite momentum Fulde–Ferrell–Larkin–Ovchinnikov(FFLO) pairing states are considered for the Weyl superconductors. When a circularly polarized light is applied, it is shown that the current phase relation remains unchanged for the BCS pairing with the increasing of incident radiation intensity A_0. For FFLO pairing, the Josephson current exhibits the 0–π transition and periodic oscillation as a function of A_0. The dependence of free energy and critical current on A_0 are also investigated.  相似文献   

3.
The kink effect in current–voltage(IV)characteristic s seriously deteriorates the performance of a GaN-based HEMT.Based on a series of direct current(DC)IV measurements in a GaN-based HEMT with an AlGaN back barrier,a possible mechanism with electron-trapping and detrapping processes is proposed.Kink-related deep levels are activated by a high drain source voltage(Vds)and located in a GaN channel layer.Both electron trapping and detrapping processes are accomplished with the help of hot electrons from the channel by impact ionization.Moreover,the mechanism is verified by two other DC IV measurements and a model with an expression of the kink current.  相似文献   

4.
The(3+1)-dimensional variable-coefficient nonlinear Schr?dinger equation with linear and parabolic traps is studied, and an exact Kuznetsov–Ma soliton solution in certain parameter conditions is derived. These precise expressions indicate that diffraction and chirp factors influence phase, center and widths, while the gain/loss parameter only affects peaks. By adjusting the relation between the maximum accumulated time Tm and the accumulated time T0 based on maximum amplitude of Kuznetsov–Ma soliton, postpone, maintenance and restraint of superposed Kuznetsov–Ma solitons are investigated.  相似文献   

5.
张庆宇  孙东科  朱鸣芳 《中国物理 B》2017,26(8):84701-084701
A multicomponent multiphase(MCMP) pseudopotential lattice Boltzmann(LB) model with large liquid–gas density ratios is proposed for simulating the wetting phenomena. In the proposed model, two layers of neighboring nodes are adopted to calculate the fluid–fluid cohesion force with higher isotropy order. In addition, the different-time-step method is employed to calculate the processes of particle propagation and collision for the two fluid components with a large pseudoparticle mass contrast. It is found that the spurious current is remarkably reduced by employing the higher isotropy order calculation of the fluid–fluid cohesion force. The maximum spurious current appearing at the phase interfaces is evidently influenced by the magnitudes of fluid–fluid and fluid–solid interaction strengths, but weakly affected by the time step ratio.The density ratio analyses show that the liquid–gas density ratio is dependent on both the fluid–fluid interaction strength and the time step ratio. For the liquid–gas flow simulations without solid phase, the maximum liquid–gas density ratio achieved by the present model is higher than 1000:1. However, the obtainable maximum liquid–gas density ratio in the solid–liquid–gas system is lower. Wetting phenomena of droplets contacting smooth/rough solid surfaces and the dynamic process of liquid movement in a capillary tube are simulated to validate the proposed model in different solid–liquid–gas coexisting systems. It is shown that the simulated intrinsic contact angles of droplets on smooth surfaces are in good agreement with those predicted by the constructed LB formula that is related to Young's equation. The apparent contact angles of droplets on rough surfaces compare reasonably well with the predictions of Cassie's law. For the simulation of liquid movement in a capillary tube, the linear relation between the liquid–gas interface position and simulation time is observed, which is identical to the analytical prediction. The simulation results regarding the wetting phenomena of droplets on smooth/rough surfaces and the dynamic process of liquid movement in the capillary tube demonstrate the quantitative capability of the proposed model.  相似文献   

6.
徐雁冰  杨红官 《中国物理 B》2017,26(12):127302-127302
An improved method of extracting the coupling capacitances of quantum dot structure is reported. This method is based on measuring the charge transfer current in the silicon nanowire metal–oxide–semiconductor field-effect transistor(MOSFET), in which the channel closing and opening are controlled by applying alternating-current biases with a half period phase shift to the dual lower gates. The capacitances around the dot, including fringing capacitances and barrier capacitances, are obtained by analyzing the relation between the transfer current and the applied voltage. This technique could be used to extract the capacitance parameters not only from the bulk silicon devices, but also from the silicon-oninsulator(SOI) MOSFETs.  相似文献   

7.
A quantum efficiency analytical model for complementary metal–oxide–semiconductor(CMOS) image pixels with a pinned photodiode structure is developed. The proposed model takes account of the non-uniform doping distribution in the N-type region due to the impurity compensation formed by the actual fabricating process. The characteristics of two boundary PN junctions located in the N-type region for the particular spectral response of a pinned photodiode, are quantitatively analyzed. By solving the minority carrier steady-state diffusion equations and the barrier region photocurrent density equations successively, the analytical relationship between the quantum efficiency and the corresponding parameters such as incident wavelength, N-type width, peak doping concentration, and impurity density gradient of the N-type region is established. The validity of the model is verified by the measurement results with a test chip of 160×160 pixels array,which provides the accurate process with a theoretical guidance for quantum efficiency design in pinned photodiode pixels.  相似文献   

8.
In this paper, we study soliton–cnoidal wave solutions for the reduced Maxwell–Bloch equations. The truncated Painlev′e analysis is utilized to generate a consistent Riccati expansion, which leads to solving the reduced Maxwell–Bloch equations with solitary wave, cnoidal periodic wave, and soliton–cnoidal interactional wave solutions in an explicit form.Particularly, the soliton–cnoidal interactional wave solution is obtained for the first time for the reduced Maxwell–Bloch equations. Finally, we present some figures to show properties of the explicit soliton–cnoidal interactional wave solutions as well as some new dynamical phenomena.  相似文献   

9.
A novel single-cavity narrowband Fabry–Pe′rot(FP) polarizing filter at normal incidence,constructed from a sandwich structure with sculptured anisotropic space layer and symmetric isotropic HR mirrors,is designed and prepared.The optical performances of transmittance,phase shift,central wavelength,and bandwidth for two polarized states are analyzed with the characteristic matrix.The numerical studies accord reasonably well with the experimental results.It is demonstrated that the polarization state of the electromagnetic wave and phase shift can be modulated by employing an anisotropic space layer in the polarizing beam splitter system.The birefringence of the anisotropic space layer provides a sophisticated phase modulation by varying the incidence angles over a broad range to have a wide-angle phase shift.  相似文献   

10.
The damping and frequency-shift in Landau mechanism of a quadrupole mode in a disc-shaped rubidium Bose–Einstein condensate are investigated by using the Hartree–Fock–Bogoliubov approximation. The practical relaxations of the elementary excitations and the orthometric relation among them are taken into account to obtain advisable calculation formula for damping as well as frequency-shift. The first approximation of Gaussian distribution function is employed for the ground-state wavefunction to suitably eliminate the divergence of the analytic three-mode coupling matrix elements.According to these methods, both Landau damping rate and frequency-shift of the quadrupole mode are analytically calculated. In addition, all the theoretical results agree with the experimental ones.  相似文献   

11.
陈海峰 《中国物理 B》2014,(12):554-558
Gate-modulated generation–recombination(GMGR) current IGMGRinduced by the interface traps in an n-type metal–oxide–semiconductor field-effect transistor(n MOSFET) is investigated. The generation current is found to expand rightwards with increasing the reversed drain PN junction bias, and the recombination current is enhanced as the forward drain bias increases. The variations of IGMGRcurves are ascribed to the changes of the electron density and hole density at the interface, NSand PS, under the different drain bias voltages. Based on an analysis of the physical mechanism, the IGMGR model is set up by introducing two coefficients(m and t). The coefficients m and t can modulate the curves widths and peak values. The simulated results under reverse mode and forward mode are obviously in agreement with the experimental results. This proves that this model can be applicable for generation current and recombination current and that the theory behind the model is reasonable. The details of the relevant mechanism are given in the paper.  相似文献   

12.
The Raman–Nath diffraction in acousto–optic effect was studied theoretically and experimentally in the paper.Up to now,each order of diffracted light in Raman–Nath diffraction was still considered simply to be just frequency-shifted and to be a plane wave.However,we find that the phase and frequency shifts occur simultaneously and individually in Raman–Nath diffraction.The findings demonstrate that,in addition to the frequency shift,the optical phase of each order of diffracted light is also shifted by the sound wave and fluctuates with the sound wave and is related to the location in the acoustic field from which the diffracted light originates.As a result,the wavefront of each order of diffracted light is modulated to fluctuate spatially and temporally with the sound wave.Obviously,these findings are significant for applications of Raman–Nath diffraction in acousto–optic effect because the optical phase plays an important role in optical coherence technology.  相似文献   

13.
The efect of Dzyaloshinskii–Moriya(D-M) interaction on the bistable nano-scale soliton switching ofers the possiblity of developing a new innovative approach for data storage technology. The dynamics of Heisenberg ferromagnetic spin system is expressed in terms of generalized inhomogeneous higher order nonlinear Schro¨dinger(NLS) equation. The bistable soliton switching in the ferromagnetic medium is established by solving the associated coupled evolution equations for amplitude and velocity of the soliton using the fourth order Runge–Kutta method numerically.  相似文献   

14.
The excellent reverse breakdown characteristics of Schottky barrier varactor(SBV) are crucially required for the application of high power and high efficiency multipliers. The SBV with a novel Schottky structure named metal–brim is fabricated and systemically evaluated. Compared with normal structure, the reverse breakdown voltage of the new type SBV improves from -7.31V to -8.75V. The simulation of the Schottky metal–brim SBV is also proposed. Three factors,namely distribution of leakage current, the electric field, and the area of space charge region are mostly concerned to explain the physical mechanism. Schottky metal–brim structure is a promising approach to improve the reverse breakdown voltage and reduce leakage current by eliminating the accumulation of charge at Schottky electrode edge.  相似文献   

15.
We measure the absorption and dispersion in a Doppler-broadened Λ-type three level system by resonant stimulated Raman spectroscopy with homodyne detection. Through studying the dressed state energies of the system, it is found that the absorption and dispersion satisfy the Kramers–Kronig relation. The absorption and dispersion spectra calculated by employing this relation agree well with our experimental observations.  相似文献   

16.
This paper reports that the 4H-SiC Schottky barrier diode, PiN diode and junction barrier Schottky diode terminated by field guard rings are designed, fabricated and characterised. The measurements for forward and reverse characteristics have been done, and by comparison with each other, it shows that junction barrier Schottky diode has a lower reverse current density than that of the Schottky barrier diode and a higher forward drop than that of the PiN diode. High-temperature annealing is presented in this paper as well to figure out an optimised processing. The barrier height of 0.79 eV is formed with Ti in this work, the forward drop for the Schottky diode is 2.1 V, with an ideality factor of 3.2, and junction barrier Schottky diode with blocking voltage higher than 400 V was achieved by using field guard ring termination.  相似文献   

17.
This paper studies the analytical and semi-analytic solutions of the generalized Calogero–Bogoyavlenskii–Schiff(CBS) equation. This model describes the(2 + 1)–dimensional interaction between Riemann-wave propagation along the y-axis and the x-axis wave. The extended simplest equation(ESE) method is applied to the model, and a variety of novel solitarywave solutions is given. These solitary-wave solutions prove the dynamic behavior of soliton waves in plasma. The accuracy of the obtained solution is verified using a variational iteration(VI) semi-analytical scheme. The analysis and the match between the constructed analytical solution and the semi-analytical solution are sketched using various diagrams to show the accuracy of the solution we obtained. The adopted scheme's performance shows the effectiveness of the method and its ability to be applied to various nonlinear evolution equations.  相似文献   

18.
The dynamical properties of fractional-order Duffing–van der Pol oscillator are studied, and the amplitude–frequency response equation of primary resonance is obtained by the harmonic balance method. The stability condition for steady-state solution is obtained based on Lyapunov theory. The comparison of the approximate analytical results with the numerical results is fulfilled, and the approximations obtained are in good agreement with the numerical solutions. The bifurcations of primary resonance for system parameters are analyzed. The results show that the harmonic balance method is effective and convenient for solving this problem, and it provides a reference for the dynamical analysis of similar nonlinear systems.  相似文献   

19.
RF phase jitter is a very important parameter for a relativistic klystron amplifier. This parameter is closely linked with the physics processes in the klystron. RF phase jitter is theoretically studied together with Particle in Cell (PIC) simulations in the paper. The main factor is deduced and verified in the PIC simulation. RF phase jitter is significantly affected by the fluctuation of the beam voltage. The relation between the phase jitter and the voltage fluctuation is linear in certain ranges.  相似文献   

20.
By solving Poisson’s equation in both semiconductor and gate insulator regions in the cylindrical coordinates, an analytical model for a dual-material surrounding-gate (DMSG) metal–oxide semiconductor field-effect transistor (MOSFET) with a high-κ gate dielectric has been developed. Using the derived model, the influences of fringing-induced barrier lowering (FIBL) on surface potential, subthreshold current, DIBL, and subthreshold swing are investigated. It is found that for the same equivalent oxide thickness, the gate insulator with high-κ dielectric degrades the short-channel performance of the DMSG MOSFET. The accuracy of the analytical model is verified by the good agreement of its results with that obtained from the ISE three-dimensional numerical device simulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号