首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biocompatible single‐component theranostic nanoagents instinctly affording multiple imaging modalities with satisfying therapeutic functions are highly desirable for anticancer treatments. Although cobalt‐based phosphides are well‐recognized as competent electrocatalysts, their potentials for biomedical applications remain unexplored. In this work, cobalt phosphide nanoparticles (CoP NPs) are developed to be a powerful theranostic agent for multimodal imaging and anticancer photothermal therapy. The uniform CoP NPs in a size of ≈21 nm are synthesized via a facile thermal decomposition method, followed by surface modification. The resultant CoP NPs exhibit excellent compatibility and stability in water as well as various physiological solutions. Supported by the good biocompatibility, strong near‐infrared absorption, and high photothermal conversion property, significant photothermal effect of the NPs is demonstrated, realizing efficient hyperthermia ablation on cancer cells. Importantly, the CoP NPs have shown considerable capabilities on high‐contrast in vitro and in vivo triple‐modal imaging, including infrared thermal (IRT), photoacoustic (PA), and T2‐weighted magnetic resonance (MR) imaging. This work has unraveled the promising potentials of CoP‐based nanoagent for precise diagnosis and efficient therapy.  相似文献   

2.
Thermo‐chemotherapy combining photothermal therapy (PTT) with chemotherapy has become a potent approach for antitumor treatment. In this study, a multifunctional drug‐delivery nanoplatform based on polyethylene glycol (PEG)‐modified mesoporous silica‐coated bismuth selenide nanoparticles (referred to as Bi2Se3@mSiO2‐PEG NPs) is developed for synergistic PTT and chemotherapy with infrared thermal (IRT) imaging of cancer cells. The product shows no/low cytotoxicity, strong near‐infrared (NIR) optical absorption, high photothermal conversion capacity, and stability. Utilizing the prominent photothermal effect, high‐contrast IRT imaging and efficient photothermal killing effect on cancer cells are achieved upon NIR laser irradiation. Moreover, the successful mesoporous silica coating of the Bi2Se3@mSiO2‐PEG NPs cannot only largely improve the stability but also endow the NPs high drug loading capacity. As a proof‐of‐concept model, doxorubicin (DOX) is successfully loaded into the NPs with rather high loading capacity (≈50.0%) via the nanoprecipitation method. It is found that the DOX‐loaded NPs exhibit a bimodal on‐demand pH‐ and NIR‐responsive drug release property, and can realize effective intracellular drug delivery for chemotherapy. The synergistic thermo‐chemotherapy results in a significantly higher antitumor efficacy than either PTT or chemotherapy alone. The work reveals the great potential of such core–shell NPs as a multifunctional drug‐delivery nanosystem for thermo‐chemotherapy.  相似文献   

3.
Inorganic/polymercore/shell nanoparticles (NPs) for theranostics have always attracted research interest due to their flexible composition and facile synthesis. Here, core/shell NPs are prepared with gadolinium hydroxide nanorods cores and Mn ion-doped polydopamine shells. After PEG modification, the relaxation rate of Gd(OH)3@MnPDA-PEG NRs achieved 35 s−1mm −1. The characterization results indicate that the predoping Mn ions obviously promote the effect of MRI compared with the nanorods without or with postdoping Mn ions, and the predoping method can effectively control the actual doping account of metal ions. Considering the toxicity, dopamine and manganese in molar ratio of 8:1 is finally chosen. Gd(OH)3@MnPDA-PEG nanorods are conducted in vivo and in vitro imaging and therapeutic experiments. The results show that the nanorods has low biological toxicity, excellent magnetic resonance imaging effects, clear photoacoustic imaging, and photothermal therapy effects.  相似文献   

4.
This work presents results from a study carried out on the Al/Cu3BiS3/Buffer/ZnO stacked layer, using high-resolution transmission electron microscopy (HRTEM). This system is used to fabricate solar cells with Al/Cu3BiS3/In2S3/ZnO and Al/Cu3BiS3/ZnS/ZnO structures. The conforming layers function as electrical contact, absorber layer, buffer layer, and optical window, respectively. The detailed results of Cu3BiS3 thin film investigation by HRTEM are presented. The Cu3BiS3 thin films are non-homogeneous and are strongly dependent on deposition conditions with grain size between 6.5 and 20?nm showing a nano-crystalline character. We found that the buffer layer of In2S3 grows in a polycrystalline structure, whereas the layer of ZnS reveals an amorphous structure. The performed study of these solar cells gives us significant information about their crystalline structure and allows us to visualize each of the constituting layers as well as of the Al/Cu3BiS3, Cu3BiS3/buffer, and buffer/ZnO interfaces. This study was correlated with electrical properties.  相似文献   

5.
Development of multifunctional nanoprobes for tumor diagnosis is extremely important in the field of molecular imaging. In this study, the facile synthesis of lactobionic acid (LA)‐targeted superparamagnetic iron oxide (Fe3O4) nanoparticles (NPs) with ultrahigh relaxivity for targeted magnetic resonance (MR) imaging of an orthotopic hepatocellular carcinoma (HCC) is reported. Polyethyleneimine (PEI)‐stabilized Fe3O4 NPs prepared via a mild reduction route are sequentially coupled with fluorescein isothiocyanate and polyethylene glycol‐LA (LA‐PEG‐COOH) segment, followed by acetylation of the remaining PEI surface amines. The formed LA‐targeted Fe3O4 NPs are thoroughly characterized. It is shown that the developed multifunctional LA‐targeted Fe3O4 NPs are colloidally stable and water‐dispersible, display an ultrahigh r 2 relaxivity (579.89 × 10?3 m ?1 s?1) and excellent hemocompatibility and cytocompatibility in the given concentration range, and can target HepG2 cells overexpressing asialoglycoprotein receptors as confirmed by in vitro cellular uptake assay, flow cytometry, and confocal microscopy. Most strikingly, the developed multifunctional LA‐targeted Fe3O4 NPs can be used as a nanoprobe for targeted MR imaging of HepG2 cells in vitro and an orthotopic tumor model of HCC in vivo. With the ultrahigh r 2 relaxivity and the versatile PEI amine‐mediated conjugation chemistry, a range of different Fe3O4 NP‐based nanoprobes may be developed for theranostics of different types of cancer.  相似文献   

6.
In this work, a new and facile strategy is developed to synthesize a single‐phase Eu3+‐doped mesoporous gadolinium oxide nanorods (MS‐Gd2O3:Eu@PEG) by incorporating a facile wet‐chemical route, which includes an induced silica layer being coated onto the nanorods, and evolution of pores and formation of channels, as well as a surface‐modified process for multimodal imaging and anti‐cancer drug delivery. The properties of these as‐prepared Gd2O3:Eu nanorods are characterized by transmission electron microscopy (TEM), X‐ray diffraction (XRD), N2 adsorption/desorption, and photoluminescence (PL). The in vitro cytotoxicity test, drug loading, and drug release experiments reveal that the MS‐Gd2O3:Eu@PEG nanorods have good biocompatibility, efficient loading capacity, and pH‐sensitive releasing behavior, suggesting the nanorods could be an ideal candidate as drug delivery vehicles for cancer therapy. Furthermore, the MS‐Gd2O3:Eu@PEG nanorods show clearly dose‐dependent contrast enhancement in T1‐weighted magnetic resonance images and can potentially be used as a T1‐positive contrast agent. These results indicate our prepared multifunctional mesoporous gadolinium oxide nanorods can serve as a promising platform for simultaneous anti‐cancer drug delivery and multimodal imaging.  相似文献   

7.
The facile hydrothermal synthesis of polyethyleneimine (PEI)‐coated iron oxide (Fe3O4) nanoparticles (NPs) doped with Gd(OH)3 (Fe3O4‐Gd(OH)3‐PEI NPs) for dual mode T1‐ and T2‐weighted magnetic resonance (MR) imaging applications is reported. In this approach, Fe3O4‐Gd(OH)3‐PEI NPs are synthesized via a hydrothermal method in the presence of branched PEI and Gd(III) ions. The PEI coating onto the particle surfaces enables further modification of poly(ethylene glycol) (PEG) in order to render the particles with good water dispersibility and improved biocompatibility. The formed Fe3O4‐Gd(OH)3‐PEI‐PEG NPs have a Gd/Fe molar ratio of 0.25:1 and a mean particle size of 14.4 nm and display a relatively high r2 (151.37 × 10?3m ?1 s?1) and r1 (5.63 × 10?3m ?1 s?1) relaxivity, affording their uses as a unique contrast agent for T1‐ and T2‐weighted MR imaging of rat livers after mesenteric vein injection of the particles and the mouse liver after intravenous injection of the particles, respectively. The developed Fe3O4‐Gd(OH)3‐PEI‐PEG NPs may hold great promise to be used as a contrast agent for dual mode T1‐ and T2‐weighted self‐confirmation MR imaging of different biological systems.  相似文献   

8.
Photothermal therapy (PTT) is an emerging noninvasive and precise localized therapeutic modality; however, it is deeply limited by its poor tumor accumulation, inadequate photothermal conversion efficiency, and the thermoresistance of cancer cells. Aimed at these shortcomings, tumor‐targeting nanoparticles (iRGD‐W18O49‐17AAG) comprising carboxyl‐group‐functionalized W18O49 nanoparticles, integrin‐targeting peptide iRGD, and HSP90‐inhibitor 17AAG are developed. The W18O49 nanoparticles act as excellent PTT carriers and computed tomography (CT) imaging contrast agents. The ring type polypeptide iRGD promotes the accumulation of nanoparticles in the tumour and further penetration into cancer cells. The introduction of 17AAG can inhibit the heat‐shock response and overcome the thermoresistance, thus increasing the curative effect of PTT and reducing the chance of tumor recurrence. The W18O49 nanoparticles can also be used to monitor and guide the phototherapeutic through CT and near‐infrared fluorescence imaging after modification with Cy5.5. In addition, superior biosafety is also indicated in both preliminary in vitro and in vivo assessments. The potential of iRGD‐W18O49‐17AAG in tumor targeting, dual modality imaging‐guided and remarkable enhanced PTT of gastric cancer with ignorable side effect both in vitro and in vivo, which may be further applied in clinic, is highlighted.  相似文献   

9.
The development of cancer photothermal therapies, many of which rely on photothermal agents, has received significant attention in recent years. In this work, various ligands‐stabilized magnetite (Fe3O4) particles are fabricated and utilized as a photothermal agents for in vivo tumor‐imaging‐guided photothermal therapy. Fe3O4 particles stabilized by macromolecular ligands as, e.g. polyethylene glycol (PEG), exhibit a superior and more stable photothermal effect compared to Fe3O4 particles stabilized by small molecules like citrate, due to their stronger ability of antioxidation. In addition, the photothermal effect of Fe3O4 particles is revealed to increase with size, which is attributed to the redshift of Vis‐NIR spectra. Fe3O4 particles injected intravenously into mice can be accumulated in the tumor by the application of an external magnetic field, as revealed by magnetic resonance imaging. In vivo photothermal therapy test of PEG‐stabilized Fe3O4 further achieves better tumor ablation effect. Overall, this study demonstrates efficient imaging‐guided photothermal therapy of cancer that is based on Fe3O4 particles of optimized size and with optimized ligands. It is expected that the ligand‐directed and size‐dependent photothermal effect will provide more approaches in the design of novel materials.  相似文献   

10.
本文通过一个简单的、温和的方案制备了平均尺寸为120 nm,介孔结构的纳米粒子MnSiO3@Fe3O4@C. 粒子的细胞毒性微小,可以用作T1-T2*双模MRI造影剂. 酸性条件下MnSiO3@Fe3O4@C释放出大量的Mn2+缩短T1弛豫时间,提高成像分辨率. 超顺磁性的Fe3O4可以增强T2对比成像,检测病变组织. 类似于肿瘤微环境/细胞器的酸性PBS(pH=5.0)中Mn2+的释放率达到31.66%,约为中性条件(pH=7.4)下的7倍. 释放的Mn2+通过内吞作用被细胞摄取,经肾脏排出,细胞毒性实验表明,MnSiO3@Fe3O4@C具有低的细胞毒性,即使高浓度的200 ppm MnSiO3@Fe3O4@C对HeLa细胞的毒性也相对较小. 对荷瘤小鼠静脉注射定量MnSiO3@Fe3O4@C后,可以观察到一个快速增强的对比成像,给药24 h后,T1MRI信号显著增强,达到132%,而T2信号则明显降低至53.8%,活体MR成像证明了MnSiO3@Fe3O4@C可以同时作为阳性和阴性造影剂. 此外,得益于介孔MnSiO3优秀的酸敏感性,MnSiO3@Fe3O4@C可以作为一种潜在的药物载体,实现肿瘤的诊疗一体化.  相似文献   

11.
Photoacoustic (PA) imaging has received great attention in the field of biomedical applications due to the combination advantages of the high contrast of optical imaging and the high spatial resolution of ultrasound. The limited targeting property of PA contrast agents is restricted to elaborate its advantage. To overcome this point, a pretargeting strategy is developed to amplify the targeting property and PA imaging of a model dye in vivo. As a proof of concept, the dibenzyl cyclootyne (DBCO)‐modified Fe@Fe3O4 nanoparticles (NPs) (Fe@Fe3O4/DBCO) and azide‐modified Cy7.5 (Cy7.5‐N3) are adopted as the pretargeting and PA contrast agents, respectively. Fe@Fe3O4/DBCO NPs are first targeted into tumors by the enhanced permeability and retention effect, and then Cy7.5‐N3 is conjugated to the pretargeted Fe@Fe3O4/DBCO labeled tumor cells via strain‐promoted alkyne azide cycloaddition reaction after intravenous injection, which results in an obvious increase of the accumulated dose and PA signal of Cy7.5 in tumor, and simultaneously extends its residence time. This signal amplification strategy should have an important guiding significance for the clinical application in cancer theranostics.  相似文献   

12.
Eight fluorinated nanoparticles (NPs) are synthesized, loaded with doxorubicin (DOX), and evaluated as theranostic delivery platforms to breast cancer cells. The multifunctional NPs are formed by self‐assembly of either linear or star‐shaped amphiphilic block copolymers, with fluorinated segments incorporated in the hydrophilic corona of the carrier. The sizes of the NPs confirm that small circular NPs are formed. The release kinetics data of the particles reveals clear hydrophobic core dependence, with longer sustained release from particles with larger hydrophobic cores, suggesting that the DOX release from these carriers can be tailored. Viability assays and flow cytometry evaluation of the ratios of apoptosis/necrosis indicate that the materials are non‐toxic to breast cancer cells before DOX loading; however, they are very efficient, similar to free DOX, at killing cancer cells after drug encapsulation. Both flow cytometry and confocal microscopy confirm the cellular uptake of NPs and DOX‐NPs into breast cancer cells, and in vitro 19F‐MRI measurement shows that the fluorinated NPs have strong imaging signals, qualifying them as a potential in vivo contrast agent for 19F‐MRI.  相似文献   

13.
The use of in situ time‐resolved dispersive X‐ray absorption spectroscopy (DXAS) to monitor the formation of Cu2(OH)3Cl particles in an aqueous solution is reported. The measurements were performed using a dedicated reaction cell, which enabled the evolution of the Cu K‐edge X‐ray absorption near‐edge spectroscopy to be followed during mild chemical synthesis. The formed Cu2(OH)3Cl particles were also characterized by synchrotron‐radiation‐excited X‐ray photoelectron spectroscopy, X‐ray diffraction and scanning electron microscopy. The influence of polyvinylpyrrolidone (PVP) on the electronic and structural properties of the formed particles was investigated. The results indicate clearly the formation of Cu2(OH)3Cl, with or without the use of PVP, which presents very similar crystalline structures in the long‐range order. However, depending on the reaction, dramatic differences were observed by in situ DXAS in the vicinities of the Cu atoms.  相似文献   

14.
Phase transitions in Cu3SbS3 are investigated under temperature variation using X-ray diffraction and nuclear quadrupole resonance. Below 263 K, Cu3SbS3 has the same structure as Wittichenite, the low temperature form of Cu3BiS3, space group P 212121. Between 263 and 395 K it is monoclinic, space group P 21c, and above 395 K it is orthorhombic, space, group Pnma with the high temperature Cu3BiS3 structure. At 295 K, Cu3SbSe3 has the orthorhombic space group Pnma with unit cell parameters a = 7.97, b = 10.61 and c = 6.83 A?.  相似文献   

15.
Cancer is a serious threat to human life. However, the effect of single treatment method is limited at present. Here, a Cu2SnTe3 (CST) nano-reagent which can provide a strong synergetic effect in tumor therapy is successfully constructed. CST nanoparticles can not only convert endogenous H2O2 into ∙OH through surface-catalyzed reactions, but also generate 1O2 based on light irradiation-induced electron pair separation, leading to excessive oxidative stress accumulation in tumor cells. Interestingly, CST nanoparticles are also found to possess catalase-like activity, which enhances the level of O2 within hypoxic tumors, further improving the production efficiency of 1O2 by photodynamic therapy (PDT). In addition, the CST nanoparticles exhibit good photothermal conversion, which facilitates to promote more OH production by chemodynamic therapy (CDT). The results of in vitro and in vivo anti-tumor experiments both demonstrate that CST nanoparticles can effectively inhibit the growth of tumor with minimal side effects. To sum up, CST nanoparticles have great potential in tumor treatment for efficient synergetic CDT/PDT/photothermal therapy.  相似文献   

16.
Polydopamine (PDA) preserves universal coating and metal‐binding ability, and is suitable for application in synthesizing multifunctional agents. Herein, utilizing mesoporous silica assisted deposition to enhance both heterogeneous nucleation and loading amounts of PDA, the magnetic resonance (MR) T1 component (PDA‐Fe3+) and MR T2/computed tomography (CT)/multiphoton luminescence (MPL) component (FePt) have been successfully integrated in aqueous solution. This four‐in‐one (T1, T2, CT, MPL) imaging nanocomposite, FePt@mSiO2 @PDA‐polyethylene glycol (PEG), demonstrated its multi‐imaging power both in vitro/in vivo. According to our in vitro/in vivo results, FePt@mSiO2@PDA‐PEG reveals water‐content‐dependent property in T1 MR imaging, which suggests the necessity of having dual‐modal MR ability in a single particle for the precision diagnosis. Most importantly, this dual (T1,T2)‐MRI/CT contrast agent is demonstrated complementary to each other in the in vivo testing. PDA coated mesoporous silica also offers an advantage of delayed degradation that prevents adverse effects caused by silica fragments before excretion. The potential of this nanocomposites in both drug carrier and photothermal agent was further evaluated by using doxorubicin and monitoring solution temperature after irradiating 808 nm continuous‐wave, respectively The merits of controlled polymerization, enhanced PDA loading, and biofavorable degradation make this methodology promising to other nanoparticle@mSiO2 for a wide range of bioapplications.  相似文献   

17.
Nonspecific high‐energy radiation for treatment of metastatic ovarian cancer is limited by damage to healthy organs, which can be mitigated by the use of radiosensitizers and image‐guided radiotherapy. Gold (Au) and tantalum oxide (TaOx) nanoparticles (NPs), by virtue of their high atomic numbers, find utility in the design of bimetallic NP systems capable of high‐contrast computed tomography (CT) imaging as well as a potential radiosensitizing effect. These two radio‐dense metals are integrated into dendritic mesoporous silica NPs (dMSNs) with radial porous channels for high surface‐area loading of therapeutic agents. This approach results in stable, monodispersed dMSNs with a uniform distribution of Au on the surface and TaOx in the core that exhibits CT attenuation up to seven times greater than iodine or monometallic dMSNs without either TaOx or Au. Tumor targeting is assessed in a metastatic ovarian cancer mouse model. Ex vivo micro‐CT imaging of collected tumors shows that these NPs not only accumulate at tumor sites but also penetrate inside tumor tissues. This study demonstrates that after intraperitoneal administration, rationally designed bimetallic NPs can simultaneously serve as targeted contrast agents for imaging tumors and to enhance radiation therapy in metastatic ovarian cancer.  相似文献   

18.
Clinical contrast agents (CAs) currently used in magnetic resonance imaging (MRI) at low fields are less effective at high magnetic fields. The development of new CAs is mandatory to improve diagnostic capabilities of the new generation of high field MRI scanners. The purpose of this study is to synthesize uniform, water dispersible LnF3 (Ln = Ho, Dy) nanoparticles (NPs) and to evaluate their relaxivity at high magnetic field (9.4 T) as a function of size and composition. Two different types of HoF3 NPs are obtained by homogeneous precipitation in ethylene glycol at 120 °C. The use of holmium acetate as holmium precursor leads to rhombus‐like nanoparticles, while smaller, ellipsoid‐like nanoparticles are obtained when nitrate is used as the holmium salt. To explain this behavior, the mechanism of formation of both kinds of particles is analyzed in detail. Likewise, rhombus‐like DyF3 nanoparticles are prepared following the same method as for the rhombus‐like HoF3 nanoparticles. We have found, to the best of knowledge, the highest transverse relaxivity values at 9.4 T described in the literature for this kind of CAs. Finally, the LnF3 NPs have shown negligible cytotoxicity for C6 rat glioma cells for concentrations up to 0.1 mg mL?1.  相似文献   

19.
In this study, manganese tellurite (MnTeO3) nanoparticles are developed as theranostic agents for magnetic resonance imaging (MRI)-guided photothermal therapy of tumor. MnTeO3 nanoparticles are synthesized via a simple one-step method. The as-synthesized MnTeO3 nanoparticles with uniform size show good biocompatibility. In particular, MnTeO3 nanoparticles exhibit a high photothermal conversion efficiency (η = 26.3%), which is higher than that of gold nanorods. Moreover, MnTeO3 nanoparticles also have high MRI performance. The longitudinal relaxivity (r1) value of MnTeO3 nanoparticles is determined to be 8.08 ± 0.2 mm −1 s−1, which is higher than that of clinically approved T1-contrast agents Gd-DTPA (4.49 ± 0.1 mm −1 s−1). The subsequent MnTeO3 nanoparticles-mediated photothermal therapy displays a highly efficient ablation of tumor cells both in vitro and in vivo with negligible toxicity. It is demonstrated that MnTeO3 nanoparticles can serve as promising theranostic agents with great potentials for MRI-guided photothermal therapy.  相似文献   

20.
Quaternary kesterite‐type Cu2ZnSnS4 (CZTS) nanoparticles (NPs) were successfully synthesized by a single‐step solvothermal process. Semiconductor CZTS nanoparticles were obtained from ethylene glycol (EG) and CZTS precursor after solvothermal process at 180 °C for 30 h in polyvinylpyrrolidone (PVP) medium. The synthesized CZTS NPs were further annealed at 450 °C in nitrogen atmosphere and used for further characterizations. The CZTS NPs were characterized using X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), micro Raman spectroscopy, high resolution transmission electron microscopy (HRTEM) and X‐ray photoelectron spectroscopy (XPS). The optical properties of the CZTS NPs were recorded by UV–vis absorption spectroscopy. The results showed that the synthesized CZTS nanoparticles are kesterite‐type CZTS, with good crystallinity and a stoichiometric composition. Moreover, the prepared nanoparticles have a size ranging from 5–7 nm and a band gap of ~1.5 eV.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号