首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Ordered Fe2O3 nanowire arrays embedded in anodic alumina membranes have been fabricated by Sol–gel electrophoretic deposition. After annealing at 600 °C, the Fe2O3 nanowire arrays were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and X-ray diffraction (XRD). SEM and TEM images show that these nanowires are dense, continuous and arranged roughly parallel to one another. XRD and SAED analysis together indicate that these Fe2O3 nanowires crystallize with a polycrystalline corundum structure. The optical absorption band edge of Fe2O3 nanowire arrays exhibits a blue shift with respect of that of the bulk Fe2O3 owing to the quantum size effect. PACS 78.67.Lt; 81.05.Je; 81.07.Vb  相似文献   

2.
Dentate-shaped β-Ga2O3 nano/microbelts were synthesized successfully via chemical vapor deposition without any other reaction or catalyzer material. The morphology and crystal structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) analytic technologies, respectively. The growth mechanism of the products was discussed assisted by the SEM and TEM images. The photoluminescence properties of the β-Ga2O3 nano/microbelts have been investigated with a He–Cd laser (325 nm) at room temperature. PACS 81.05.Hd; 81.07.Bc; 81.10.Bk; 81.15.Gh; 81.70.Fy  相似文献   

3.
In this study, we demonstrate the large-scale synthesis of beta gallium oxide (β-Ga2O3) nanowires through microwave plasma chemical vapor deposition (MPCVD) of a Ga droplet in the H2O and Ar atmosphere at 600 W. Unlike the commonly used MPCVD method, the H2O, not mixture of gas, was employed to synthesize the nanowires. The ultra-long β-Ga2O3 nanowires with diameters of about 20-30 nm were several tens of micrometers long. The morphology and structure of products were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscope (HRTEM). The growth of β-Ga2O3 nanowires was controlled by vapor-solid (VS) crystal growth mechanism.  相似文献   

4.
We investigated the impact of the process temperature on the habits, forms and crystal structure of VO2 nanocrystals grown by a vapor-transport method on (0001) quartz substrates. Four distinct growth regimes were discerned: orthorhombic nanowires, sheets, hemispheres, and nanowires with a monoclinic structure. The nanostructures were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). I/V characterization of individual nanowires was enabled by Ti/Au contact formation via electron beam lithography and lift-off techniques. The expected metal–insulator transition (MIT) was found in monoclinic VO2 nanowires.  相似文献   

5.
Sb2O3 nanowires with diameters of ∼233 nm and microspheres assembled by these nanowires were successfully synthesized by a simple poly-(vinylpyrrolidone) (PVP) assisted hydrothermal method. The morphologies, nano/microstructures and optical properties of the as-grown nanowires and microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis diffuse reflection spectrum. It has been found that the experimental parameters, such as mineralizers, played crucial roles in the morphological control of Sb2O3 nanowires. The possible growth mechanism of microspheres has been proposed.  相似文献   

6.
SnO2 nanowires were synthesized using a direct gas reaction route and were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), selected-area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and Raman-scattering spectroscopy. XRD, SEM, SAED and HRTEM indicated that the products were tetragonal SnO2 nanowires with diameters of 10–50 nm. The nanowires were single crystal and solid inside. Dendritic nanowires were observed for the first time. Three vibrational modes were observed in the Raman spectra of the samples. Received: 7 January 2002 / Accepted: 11 April 2002 / Published online: 19 July 2002  相似文献   

7.
In-doped Ga2O3 zigzag-shaped nanowires and undoped Ga2O3 nanowires have been synthesized on Si substrate by thermal evaporation of mixed powders of Ga, In2O3 and graphite at 1000 °C without using any catalyst via a vapor-solid growth mechanism. The morphologies and microstructures of the products were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and photoluminescence spectroscopy (PL). The nanowires range from 100 nm to several hundreds of nanometers in diameter and several tens of micrometers in length. A broad emission band from 400 to 700 nm is obtained in the PL spectrum of these nanowires at room temperature. There are two blue-emission peaks centering at 450 and 500 nm, which originate from the oxygen vacancies, gallium vacancies and gallium-oxygen vacancy pairs.  相似文献   

8.
The field-emission properties of molybdenum oxide nanowires grown on a silicon substrate and its emission performance in various vacuum gaps are reported in this article. A new kind of molybdenum oxides named nanowires with nanoscale protrusions on their surfaces were grown by thermal vapor deposition with a length of ~1 μm and an average diameter of ~50 nm. The morphology, structure, composition and chemical states of the prepared nanostructures were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). According to XRD, XPS, and TEM analyses, the synthesized samples were composed of MoO2 nanowires formed over a thin layer of crystalline Mo4O11. TEM observation revealed that these nanowires have some nanoscale protrusion on their surface. These nanoprotrusions resulted in enhancement of field-emission properties of nanowires comprising nanoprotrusions. The turn-on emission field and the enhancement factor of this type of nanostructures were measured 0.2 V/μm and 42991 at the vacuum gap of 300 μm, respectively. These excellent emission properties are attributed to the special structure of the nanowires that have potential for utilizing in vacuum nanoelectronic and microelectronic applications.  相似文献   

9.
Octahedral In2O3 crystals were synthesized by evaporation of a mixture of In2O3 and graphite in a horizontal double-tube system. By adjusting the experimental conditions, In2O3 nanowires and nanobelts were also obtained. The microstructures of the resultant In2O3 materials were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), X-ray diffraction. In addition, the growth mechanism of the octahedral In2O3 crystals was discussed in detail.  相似文献   

10.
Densely packed LaCoO3 nanowires of the rare-earth perovskite-type composite oxide were synthesized within a porous anodic aluminum oxide (AAO) template by means of the sol–gel method using nitrate as raw the material and citric acid as the chelating agent. The results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the LaCoO3 nanowires possessed a uniform length and diameter, which were controlled by the thickness and the pore diameter of the applied AAO template, respectively. The results of X-ray diffraction (XRD) and the selected area electron diffraction (SAED) indicated that the LaCoO3 nanowires had a rhombohedral perovskite-type crystal structure. Furthermore, X-ray photoelectron spectroscopy (XPS) demonstrated that LaCoO3 nanowires were formed. Finally, the formation mechanism of nanowires was also discussed. PACS 61.66.Fn; 61.46.-W; 81.20.Fw  相似文献   

11.
We have successfully synthesized one-dimensional (1-D ) indium oxide (In2O3) arrays by the metalorganic chemical vapor deposition (MOCVD) method. We have characterized the products by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The SEM images showed that the 1-D materials with serrated surfaces had cross-sections in the shape of an acute triangle. The XRD and TEM studies revealed that the 1-D materials possessed a single-crystalline cubic structure and that the growth occurred preferentially along the [111] direction. PACS 81.15.Gh  相似文献   

12.
In this study, beta-gallium oxide (β-Ga2O3) nanowires, nanobelts, nanosheets, and nanograsses were synthesized through microwave plasma of liquid phase gallium containing H2O in Ar atmosphere using silicon as the substrate. The nanowires with diameters of about 20-30 nm were several tens of microns long and the nanobelts with thickness of about 20-30 nm were tens to hundreds of microns long. The morphology and structure of products were analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD). These results showed that multiple nucleation and growth of β-Ga2O3 nanostructures could easily occur directly out of liquid gallium exposed to appropriate H2O and Ar in the gas phase. The growth process of β-Ga2O3 nanostructures may be dominated by VS (vapor-solid) mechanism.  相似文献   

13.
ZnCo2O4 nanomaterial was prepared by co-precipitation method and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), and galvanostatic charge–discharge tests at various current densities. It is shown that the crystal structure and surface morphology play an important role in the enhancement of the specific capacitance. The TEM results clearly indicate that the prepared material shows aggregated particles. The particle size powder was about 50 nm, and SEM pictures indicate a porous morphology. The electrochemical behavior of ZnCo2O4 was characterized by mixing equal proportion of carbon nanofoam (CNF). From CV, it is concluded that the combination of redox and pseudo-capacitance increases the specific capacitance up to 77 F g−1 at 5 mV s−1 scan rate. The ZnCo2O4-based supercapacitor cell has good cyclic stability and high coulombic efficiency.  相似文献   

14.
Spinel CoFe2O4 nanowire arrays were synthesized in nanopores of anodic aluminum oxide (AAO) template using aqueous solution of cobalt and iron nitrates as precursor. The precursor was filled into the nanopores by vacuum impregnation. After heat treatment, it transformed to spinel CoFe2O4 nanowires. The structure, morphology and magnetic properties of the sample were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results indicate that the nanowire arrays are compact. And the individual nanowires have a high aspect ratio, which are about 80 nm in diameter and 10 μm in length. The nanowires are polycrystalline spinel phase. Magnetic measurements indicate that the nanowire arrays are nearly magnetic isotropic. The reason is briefly discussed. Moreover, the temperature dependence of the coercive force of the nanowire arrays was studied.  相似文献   

15.
GaN nanowires have been successfully synthesized on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga2O3/Cr thin films at 950 °C. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), FT-IR spectrophotometer, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), and photoluminescence (PL) spectrum were carried out to characterize the microstructure, morphology, and optical properties of GaN samples. The results demonstrate that the nanowires are single-crystal GaN with hexagonal wurtzite structure and high-quality crystalline, have the size of 30-80 nm in diameter and several tens of microns in length with good emission properties. The growth direction of GaN nanowires is perpendicular to the fringe of (1 0 1) plane. The growth mechanism of GaN nanowires is also discussed in detail.  相似文献   

16.
Core-shell structured ZnO/In2O3 composites were successfully synthesized via situ growth method. Phase structure, morphology, microstructure and property of the products were investigated by X-ray diffraction (XRD), TG-DTA, field emission scanning electron microscopy (FESEM), energy-dispersive spectrometry (EDS), transmission electron microscope (TEM) and photoluminescence (PL). Results show that the core-shell structures consist of spindle-like ZnO with about 800 nm in length and 200 nm in diameter, and In2O3 particles with a diameter of 50 nm coated on the surface of ZnO uniformly. HMTA plays an important role in the formation of core-shell structures and the addition of In2O3 has a great effect on PL spectrum. Possible mechanism for the formation of core-shell structures is also proposed in this paper.  相似文献   

17.
GaN nanowires were successfully synthesized at high quality and large yield on Si (1 1 1) substrate through ammoniating Ga2O3/BN films deposited by radio frequency (RF) magnetron sputtering system. X-ray diffraction (XRD), Fourier transformed infrared spectra (FTIR) and selected-area electron diffraction (SAED) confirm that the as-synthesized nanowires are of a hexagonal GaN with wurtzite structure. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) reveal that the nanowires have a straight and smooth curved structure with extremely uniform diameter of about 60 nm, which is helpful to the application of GaN nanowires. The present results demonstrate that the BN is a very important intermedium in the growth of GaN nanowires by this method.  相似文献   

18.
High-density monoclinic β-Ga2O3 nanowires were synthesized by a vapor transport method with controlled ambient oxygen. The structures and morphology were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). X-ray diffraction and HR-TEM analysis indicate that the as-grown β-Ga2O3 nanowires are single crystals with monoclinic structure. Intense four-band emissions covering the range from ultraviolet (UV) to visible were observed in photoluminescence (PL) spectra at room temperature. The main emission bands of deep blue (3.04 eV) to green (2.37 eV) for β-Ga2O3 nanowires were adjusted by controlling the partial pressure of oxygen. This work demonstrates a low-cost and facile process for optoelectronics applications.  相似文献   

19.
Straight and smooth GaN nanowires were synthesized on quartz substrates through the direct reaction of Ga2O3 thin films with flowing ammonia in a horizontal oven without using a template or catalyst. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM) and photoluminescence (PL) were used to characterize the samples. The straight and smooth cylindrical nanostructures are high quality single crystalline hexagonal wurtzite GaN nanowires with diameters ranging from 5 to 30 nm and lengths up to 20 μm. The near-band-edge emission peak located at 367 nm was observed at room temperature.  相似文献   

20.
《Current Applied Physics》2015,15(4):493-498
Ultrahigh-aspect-ratio V2O5 nanowires were successfully prepared using [VO(O2)2(OH2)] as the starting material by a template-free hydrothermal route without the addition of organic surfactant or inorganic ions. The prepared samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmet–Teller (BET), cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD). The results revealed that the peroxovanadium (V) complexes can be easily transformed to V2O5 nanowires by this hydrothermal route. The uniform nanowires were with width about 50 nm and length about dozens of micron. The BET analysis showed the V2O5 nanowires had a high specific surface area of 25.6 m2 g−1. The synthesized V2O5 nanowires performed a high capacitance of 351 F g−1 when used as supercapacitor electrode in 1 mol L−1 LiNO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号