首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We treat the finite volume element method (FVE) for solving general second order elliptic problems as a perturbation of the linear finite element method (FEM), and obtain the optimal H1 error estimate, H1 superconvergence and Lp (1 < p ≤ ∞) error estimates between the solution of the FVE and that of the FEM. In particular, the superconvergence result does not require any extra assumptions on the mesh except quasi‐uniform. Thus the error estimates of the FVE can be derived by the standard error estimates of the FEM. Moreover we consider the effects of numerical integration and prove that the use of barycenter quadrature rule does not decrease the convergence orders of the FVE. The results of this article reveal that the FVE is in close relationship with the FEM. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 693–708, 2003.  相似文献   

2.
We derive residual‐based a posteriori error estimates of finite element method for linear wave equation with discontinuous coefficients in a two‐dimensional convex polygonal domain. A posteriori error estimates for both the space‐discrete case and for implicit fully discrete scheme are discussed in L(L2) norm. The main ingredients used in deriving a posteriori estimates are new Clément type interpolation estimates in conjunction with appropriate adaption of the elliptic reconstruction technique of continuous and discrete solutions. We use only an energy argument to establish a posteriori error estimates with optimal order convergence in the L(L2) norm.  相似文献   

3.
We provide new insights into the a priori theory for a time‐stepping scheme based on least‐squares finite element methods for parabolic first‐order systems. The elliptic part of the problem is of general reaction‐convection‐diffusion type. The new ingredient in the analysis is an elliptic projection operator defined via a nonsymmetric bilinear form, although the main bilinear form corresponding to the least‐squares functional is symmetric. This new operator allows to prove optimal error estimates in the natural norm associated to the problem and, under additional regularity assumptions, in the L2 norm. Numerical experiments are presented which confirm our theoretical findings.  相似文献   

4.
This paper deals with the numerical solution of optimal control problems, where the state equations are given by the fourth order elliptic partial differential equations. An iterative algorithm for this class of problems is developed. This new proposal is obtained by combining the Conjugate Gradient Method (CGM) with the Boundary Element Method (BEM) and Multiple Reciprocity Method (MRM). The local error estimates based on the stability of this scheme in the H2 norm, L2 norm and L norm are obtained. Finally, the numerical results on a test case show that this method is correct and feasible.  相似文献   

5.
A mixed finite element method is developed for a nonlinear fourth-order elliptic problem. Optimal L2 error estimates are proved by using a special interpolation operator on the standard tensor-product finite elements of order k?1. Then two iterative schemes are presented and proved to keep the same optimal error estimates. Three numerical examples are provided to support the theoretical analysis.  相似文献   

6.
We deal with the numerical solution of a scalar nonstationary nonlinear convection‐diffusion equation. We employ a combination of the discontinuous Galerkin finite element (DGFE) method for the space as well as time discretization. The linear diffusive and penalty terms are treated implicitly whereas the nonlinear convective term is treated by a special higher order explicit extrapolation from the previous time step, which leads to the necessity to solve only a linear algebraic problem at each time step. We analyse this scheme and derive a priori asymptotic error estimates in the L(L2) –norm and the L2(H1) –seminorm with respect to the mesh size h and time step τ. Finally, we present an efficient solution strategy and numerical examples verifying the theoretical results. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1456–1482, 2010  相似文献   

7.
In this article, we study the edge residual‐based a posteriori error estimates of conforming linear finite element method for nonmonotone quasi‐linear elliptic problems. It is proven that edge residuals dominate a posteriori error estimates. Up to higher order perturbations, edge residuals can act as a posteriori error estimators. The global reliability and local efficiency bounds are established both in H 1‐norm and L 2‐norm. Numerical experiments are provided to illustrate the performance of the proposed error estimators. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 813–837, 2014  相似文献   

8.
In this paper, we present a two-grid mixed finite element scheme for distributed optimal control governed by general elliptic equations. –P1 mixed finite elements are used for the discretization of the state and co-state variables, whereas piecewise constant function is used to approximate the control variable. We first use a new approach to obtain the superclose property between the centroid interpolation and the numerical solution of the optimal control u with order h2 under the low regularity. Based on the superclose property, we derive the optimal a priori error estimates. Then, using a postprocessing projection operator, we get a second-order superconvergent result for the control u. Next, we construct a two-grid mixed finite element scheme and analyze a priori error estimates. In the two-grid scheme, the solution of the elliptic optimal control problem on a fine grid is reduced to the solution of the elliptic optimal control problem on a much coarser grid and the solution of a linear algebraic system on the fine grid and the resulting solution still maintains an asymptotically optimal accuracy. Finally, a numerical example is presented to verify the theoretical results.  相似文献   

9.
We derive residual based a posteriori error estimates for parabolic problems on mixed form solved using Raviart–Thomas–Nedelec finite elements in space and backward Euler in time. The error norm considered is the flux part of the energy, i.e. weighted L 2(Ω) norm integrated over time. In order to get an optimal order bound, an elementwise computable post-processed approximation of the scalar variable needs to be used. This is a common technique used for elliptic problems. The final bound consists of terms, capturing the spatial discretization error and the time discretization error and can be used to drive an adaptive algorithm.  相似文献   

10.
In this article, we present a finite element scheme combined with backward Euler method to solve a nonlocal parabolic problem. An important issue in the numerical solution of nonlocal problems while using Newton's method is related to its structure. In fact differently from the local case where the Jacobian matrix is sparse and banded, in the nonlocal case the Jacobian matrix is dense and computations are much more onerous compared to that for differential equations. In order to avoid this difficulty, we use the technique given by Gudi (SIAM J Numer Anal 50 (2012), 657–668) for elliptic nonlocal problem of Kirchhoff type. We discuss the well‐posedness of the weak formulation at continuous as well as at discrete levels. We also derive a priori error estimates for semidiscrete and fully discrete formulations in L2 and H1 norms. Results based on the usual finite element method are provided to confirm the theoretical estimates. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 786–813, 2017  相似文献   

11.
We study the numerical approximation of distributed nonlinear optimal control problems governed by semilinear elliptic partial differential equations with pointwise constraints on the control. Our main result are error estimates for optimal controls in the maximum norm. Characterization results are stated for optimal and discretized optimal control. Moreover, the uniform convergence of discretized controls to optimal controls is proven under natural assumptions.  相似文献   

12.
This paper deals with optimal control problems constrained by linear elliptic partial differential equations. The case where the right‐hand side of the Neumann boundary is controlled, is studied. The variational discretization concept for these problems is applied, and discretization error estimates are derived. On polyhedral domains, one has to deal with edge and corner singularities, which reduce the convergence rate of the discrete solutions, that is, one cannot expect convergence order two for linear finite elements on quasi‐uniform meshes in general. As a remedy, a local mesh refinement strategy is presented, and a priori bounds for the refinement parameters are derived such that convergence with optimal rate is guaranteed. As a by‐product, finite element error estimates in the H1(Ω)‐norm, L2(Ω)‐norm and L2(Γ)‐norm for the boundary value problem are obtained, where the latter one turned out to be the main challenge. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this article, we consider the finite volume element method for the monotone nonlinear second‐order elliptic boundary value problems. With the assumptions which guarantee that the corresponding operator is strongly monotone and Lipschitz‐continuous, and with the minimal regularity assumption on the exact solution, that is, uH1(Ω), we show that the finite volume element method has a unique solution, and the finite volume element approximation is uniformly convergent with respect to the H1 ‐norm. If uH1+ε(Ω),0 < ε ≤ 1, we develop the optimal convergence rate \begin{align*}\mathcal{O}(h^{\epsilon})\end{align*} in the H1 ‐norm. Moreover, we propose a natural and computationally easy residual‐based H1 ‐norm a posteriori error estimator and establish the global upper bound and local lower bounds on the error. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

14.
In this article a standard mortar finite element method and a mortar element method with Lagrange multiplier are used for spatial discretization of a class of parabolic initial‐boundary value problems. Optimal error estimates in L(L2) and L(H1)‐norms for semidiscrete methods for both the cases are established. The key feature that we have adopted here is to introduce a modified elliptic projection. In the standard mortar element method, a completely discrete scheme using backward Euler scheme is discussed and optimal error estimates are derived. The results of numerical experiments support the theoretical results obtained in this article. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

15.
We prove the quasi-optimal convergence of a standard adaptive finite element method (AFEM) for a class of nonlinear elliptic second-order equations of monotone type. The adaptive algorithm is based on residual-type a posteriori error estimators and Dörfler's strategy is assumed for marking. We first prove a contraction property for a suitable definition of total error, analogous to the one used by Diening and Kreuzer (2008) and equivalent to the total error defined by Cascón et. al. (2008). This contraction implies linear convergence of the discrete solutions to the exact solution in the usual $H^1$ Sobolev norm. Secondly, we use this contraction to derive the optimal complexity of the AFEM. The results are based on ideas from Diening and Kreuzer and extend the theory from Cascón et. al. to a class of nonlinear problems which stem from strongly monotone and Lipschitz operators.  相似文献   

16.
We develop a discontinuous mixed covolume method for elliptic problems on triangular meshes. An optimal error estimate for the approximation of velocity is obtained in a mesh-dependent norm. First-order L2-error estimates are derived for the approximations of both velocity and pressure.  相似文献   

17.
We consider a class of mixed finite element methods for nonlinear parabolic problems over a plane domain. The finite element spaces taken are Raviart-Thomas spaces of index k, k ? 0. We obtain optimal order L2- and almost optimal order L-error estimates for the finite element solution and order optimal L2-error estimates for its gradient. We also derive the error estimates for the time derivatives of the solution. Our results extend those previously obtained by Johnson and Thomée for the corresponding linear problems with k ? 1.  相似文献   

18.
The purpose of this paper is to study the effect of the numerical quadrature on the finite element approximation to the exact solution of elliptic equations with discontinuous coefficients. Due to low global regularity of the solution, it seems difficult to achieve optimal order of convergence with classical finite element methods [Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998) 175-202]. We derive error estimates in finite element method with quadrature for elliptic interface problems in a two-dimensional convex polygonal domain. Optimal order error estimates in L2 and H1 norms are shown to hold even if the regularity of the solution is low on the whole domain. Finally, numerical experiment for two dimensional test problem is presented in support of our theoretical findings.  相似文献   

19.
In this article, we propose a new discontinuous finite volume element (DFVE) method for the second‐order elliptic problems. We treat the DFVE method as a perturbation of the interior penalty method and get a superapproximation estimate in a mesh dependent norm between the solution of the DFVE method and that of the interior penalty method. This reveals that the DFVE method is much closer to the interior penalty method than we have known. By using this superapproximation estimate, we can easily get the optimal order error estimates in the L2 ‐norm and in the maximum norms of the DFVE method.© 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 425–440, 2012  相似文献   

20.
The aim of this paper is to study the Cauchy problem of determining a solution of nonlinear elliptic equations with random discrete data. A study showing that this problem is severely ill posed in the sense of Hadamard, ie, the solution does not depend continuously on the initial data. It is therefore necessary to regularize the in‐stable solution of the problem. First, we use the trigonometric of nonparametric regression associated with the truncation method in order to offer the regularized solution. Then, under some presumption on the true solution, we give errors estimates and convergence rate in L2‐norm. A numerical example is also constructed to illustrate the main results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号