首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
郑易安  王爱勤 《应用化学》2009,26(10):1154-1158
用制备的聚(丙烯酸-co-丙烯酰胺)/蒙脱土/腐殖酸钠复合吸附剂,研究了溶液pH值、吸附时间和Pb2+溶液初始浓度等因素对重金属Pb2+的吸附性能,探讨了复合吸附剂对Pb2+的吸附机理。结果表明,在pH值为6.0、吸附时间2 h、Pb2+溶液初始浓度0.01 mol/L和吸附剂用量0.10 g的条件下,复合吸附剂对Pb2+的吸附量达到364.05 mg/g,平衡所需的时间为15 min。与蒙脱土相比,复合吸附剂具有更高的吸附容量和更快的吸附速率。  相似文献   

2.
王猛  田一光  景晓燕  张乔  张密林  张东 《化学研究》2006,17(2):57-59,64
将蒙脱土的硅酸盐晶层空间作为微反应场所,用微波加热先将钠基蒙脱土转化为镍基蒙脱土,再引入三乙烯四胺配体,使配体与镍离子在蒙脱土层间原位发生配位反应,制得配合物/蒙脱土纳米复合体.XRD结果表明蒙脱土的层间距在引入三乙烯四胺后明显变大.紫外可见漫反射光谱、热分析和元素分析结果表明三乙烯四胺与N i2+离子在蒙脱土层间形成了配合物.  相似文献   

3.
分别采用新型双子阳离子表面活性剂Y-16和十六烷基三甲基溴化铵(CTAB)改性钠基蒙脱土,通过IR、TGA、XRD对其进行表征,研究了表面活性剂的浓度、改性蒙脱土的用量以及接触时间对2,4-二氯-5-硝基苯酚(DCNP)吸附的影响。结果表明:上述两种表面活性剂成功插入钠基蒙脱土层间结构且扩大了其层间距。随着表面活性剂的浓度、改性蒙脱土的用量、接触时间的增加,改性蒙脱土对DCNP的吸附量也随之增加,并达到最大值。当采用0.1g 1.8CEC改性蒙脱土且接触时间为180min时,CTAB-MMT和Y-16-MMT对DCNP达到最大吸附量分别为184.84mg·g~(-1)、164.47mg·g~(-1)。改性蒙脱土对DCNP的吸附行为符合二级动力学方程和Langmuir等温吸附方程。  相似文献   

4.
用聚合物乳液与蒙脱土的水分散体共混共凝的方法制备混杂材料.在混合过程中乳胶粒与蒙脱土晶层相互穿插,用盐酸絮凝,带正电的共聚物能够嵌入带负电的蒙脱土层间.萃取实验发现在混杂材料中蒙脱土吸附了大量的共聚物,说明蒙脱土晶层与共聚物之间存在静电吸附作用.XRD实验发现在混杂材料中蒙脱土的晶层结构发生了膨胀,并且变得混乱,而在共混物中蒙脱土晶层结构几乎不变.用TEM观察在混杂材料中蒙脱土晶层均匀分散于共聚物基体中,蒙脱土的层间距大于6nm.共聚物嵌入蒙脱土的层间,受到蒙脱土晶层的限制作用,共聚物的Tg发生了变化.交联以后的混杂材料的性能比共聚物有了较大的提高,蒙脱土晶层在共聚物基体中起到很好的补强作用.  相似文献   

5.
通过离子交换反应将四足配体铕配合物[EuL(NO3)]2+[L=1,1,1’,1’-四(吡啶-2-羧酸酯基)联三甲基丙烷]插层组装到蒙脱土(MT)层板间, 制备出一种新型的超分子复合发光材料[EuL(NO3)]2+-MT. 用元素分析、XRD、FTIR、UV-Vis和热分析对材料进行了表征, 并对其荧光性质进行了研究. 结果表明, 复合材料保持了蒙脱土良好的层柱结构特征, 其层间距d(001)值与插层配离子的直径吻合得较好, 配离子以单层形式分布于蒙脱土层板间. 在紫外光激发下, 复合材料发出较强的Eu3+特征荧光, 其相对荧光强度、荧光单色性和荧光寿命大大优于相应配合物的乙醇溶液. 复合材料中配合物的发光性能、光稳定性和热稳定性较纯配合物有明显提高.  相似文献   

6.
蒙脱土/阳离子偶氮染料插层纳米复合物离子交换吸附   总被引:4,自引:0,他引:4  
李强  李钟 《化学学报》2004,62(15):1409-1414,FJ02
从有机阳离子与蒙脱土离子交换吸附原理出发,推导出吸附等温式和表面二维状态方程理论关系,给出了热失重确定吸附量的数据处理方法.选择具有光致变色功能、整个分子共轭的有机阳离子GTL作为插层剂,成功制备了一系列插层纳米复合物.GTL阳离子交换吸附实验数据符合推导出的吸附等温式,插层复合物界面压强π随其含水量增大而线性减小,在较低π下,层间GTL以平行于蒙脱土片层表面的单分子层形态排列;随着π增大,层间GTL以倾斜于蒙脱土片层表面的头尾交指型团聚体形态排列;在更大的π下,层间GTL倾向垂直于蒙脱土片层表面成双分子层排列,其尾端重叠自组装形成超分子共轭纳米结构,层间GTL热稳定性大幅度提高。  相似文献   

7.
研究了自制巯基功能化膨润土(TFB)对Pb2+的吸附行为,考察了溶液的pH值、离子强度、吸附时间和温度对吸附平衡的影响,并对吸附过程进行了动力学与热力学研究.结果表明,常温下,吸附时间为60min、0.1mol/L的KNO3、pH=6.0、5.0g/L TFB对200mg/L的Pb2+的吸附率达到85.4%以上,TFB对Pb2+的吸附动力学符合准二级动力学方程;TFB对Pb2+的吸附热力学符合Langmuir等温线方程和Dubinin-Radushkevich (D-R)等温线方程,表明吸附主要发生在TFB表面的活性区域,属于单分子层吸附,其吸附平均活化能E在8-16kJ/mol范围内,表明该吸附过程为化学吸附,不同温度下的吸附热力学的吉布斯自由能以及熵变和焓变表明该吸附过程为自发放热反应.  相似文献   

8.
以罗望子胶原粉(TKP)为基料,氯乙酸钠(SMCA)为羧甲基醚化剂,环氧氯丙烷(ECH)为交联剂制备了取代度(DS)分别为0.42,0.64和0.88的3种交联羧甲基罗望子胶(CCMTKP),探究其对水溶液中Pb2+的吸附行为。结果表明,适宜吸附的pH值范围为2~6;吸附剂较佳用量为0.5%;3种CCMTKP对Pb2+的吸附在15min内达到平衡,遵从二级动力学方程;吸附符合Langmuir等温吸附模型,CCMTKP对Pb2+的最大吸附量为131.58mg/g;再生后的CCMTKP吸附性能良好,脱附百分率高,有望作为Pb2+的吸附剂使用。  相似文献   

9.
利用合成的磷酸锡晶体作为吸附剂,考察了pH值、吸附时间、初始浓度、温度等因素对吸附水溶液中Pb2+的影响,同时考察了在模拟海水中的吸附效果。结果表明,磷酸锡对Pb2+的吸附量随着pH(3~6)以及吸附时间的增大而增加。吸附动力学过程符合准二级动力学模型。等温吸附数据用Langmuir方程拟合效果最好,20℃时饱和吸附量达到110.50mg/g。Dubinin-Radushkevich(D-R)模型研究表明吸附机理属于化学离子交换。反应机理为磷酸锡中的H+与溶液中的Pb2+发生了离子交换反应。热力学研究表明磷酸锡对Pb2+的吸附是一个自发的、吸热的过程,升温有利于吸附。模拟海水中Pb2+的吸附实验结果表明,高盐度对磷酸锡吸附Pb2+有一定的不利影响,但幅度不大,可以用于去除养殖海水中的Pb2+。所吸附的Pb2+可以用HCl解吸,说明磷酸锡具有重复利用的潜能。  相似文献   

10.
用两种方法分别将四足配体铽配合物[TbL(NO3)]^2+和[TbL]^3+插层组装到了蒙脱土(MT)层板间,制备出超分子复合发光材料[TbL(NO3)^2+-MT和[TbL]^3+-MT。方法一:通过离子交换反应让配离子[TbL(NO3)]^2+取代钠+基蒙脱土(Na-MT)中的Na^+离子,插层组装到蒙脱土层板间。方法二:用配体L与铽基蒙脱土(Tb-MT)反应,使配体插入蒙脱土层板间与Tb^3+离子配位。用元素分析、XRD,FT-IR,UV-vis和热分析对材料进行了表征,并对其荧光性质进行了研究。结果表明,复合材料保持了蒙脱土良好的层柱结构特征,其层间距d001值与插层配离予的直径吻合较好,配离子以单层形式分布于蒙脱土层板间,复合材料中配合物的热稳定性有明显提高。在紫外光激发下,复合材料发出较强的Tb^3+特征荧光,其发射光谱与相应配合物的发射光谱很相似;复合材料中配合物的相对荧光强度较相应纯配合物有明显提高。荧光寿命较长;配合物的激发波长向可见光区发生位移,说明插层组装实现了对配合物激发波长的调制作用。  相似文献   

11.
12.
Little spectroscopic evidence exists in the literature describing the surface complexation of cadmium (Cd) and lead (Pb) on kaolinite, the dominant clay mineral present in highly weathered soils of tropical and humid climates. X-ray absorption fine structure (XAFS) spectroscopy data at the Cd K and Pb L(III) edges were collected on Cd- and Pb-sorbed kaolinite samples and compared to a suite of reference materials including Pb and Cd sorbed on amorphous (am-)gibbsite. Cadmium formed dominantly (>75%) outer sphere complexes on kaolinite and a small fraction of CdOHCl complexes. In contrast Cd adsorbed as an inner sphere complex on gibbsite, suggesting that the Si tetrahedral sheet hindered Cd sorption to the Al octahedral sheet on kaolinite. Lead formed polymeric complexes, which bonded to kaolinite via edge sharing with surface Al octahedra. Two distinct Pb-Al edge-sharing distances on am-gibbsite, as opposed to one on kaolinite, suggested a similar steric hindrance effect for the surface complexation of polymeric Pb complexes on kaolinite. The results of this study show that the Si tetrahedral sheet limited the surface complexation of Cd and Pb on kaolinite, elevating kaolinite's permanent negative charge properties in retaining these heavy metals at its surface.  相似文献   

13.

Differential sorption and degradation of different pesticide stereoisomers in soil may result in accumulation of the most strongly sorbed and the slowest degradable isomers. In this work the pyrethroid cypermethrin (8 isomers) has been used for test of stereochemical interactions with surfaces of the minerals quartz, corundum, goethite, kaolinite and montmorillonite. The sorption of three diastereoisomeric fractions denoted Cis A, Trans C and Cis B + Trans D were quantified by use of GC-ECD in batch experiments with initial cypermethrin concentrations in the range 1-9 µg/L. Correction for cypermethrin sorbed to surfaces of the shaking flasks were accomplished to obtain net sorption isotherms for the minerals, all of which were well fitted by the Freundlich equation. Bonding affinities per unit surface area decreased in the order: corundum > quartz > kaolinite > montmorillonite > goethite. The isotherms for sorption of all diastereoisomeric fractions to quartz, corundum and goethite were all linear, whereas non-linear isotherms were found for sorption of Cis A and Trans C fractions to kaolinite and montmorillonite. Corundum, quartz and goethite showed a significantly stronger sorption of Cis A than the other fractions, while kaolinite sorbed Cis B + Trans D most strongly. The observed differences predict less leaching and slower degradation of the Cis A fraction in subsoils low in organic carbon.  相似文献   

14.
The aim of this study was to carry out kinetic, thermodynamic, and surface characterization of the sorption of Cs+ ions on natural minerals of kaolinite and clinoptilolite. The results showed that sorption followed pseudo-second-order kinetics. The activation energies were 9.5 and 13.9 kJ/mol for Cs+ sorption on kaolinite and clinoptilolite, respectively. Experiments performed at four different initial concentrations of the ion revealed that the percentage sorption of Cs+ on clinoptilolite ranged from 90 to 95, compared to 28 to 40 for the kaolinite case. At the end of a 1 week period, the percentage of Cs+ desorption from clinoptilolite did not exceed 7%, while it amounted to more than 30% in kaolinite, indicating more stable fixation by clinoptilolite. The sorption data were best described using Freundlich and D-R isotherm models. Sorption showed spontaneous and exothermic behavior on both minerals, with deltaH(0) being -6.3 and -11.4 kJ/mol for Cs+ uptake by kaolinite and clinoptilolite, respectively. Expanding the kaolinite interlayer space from 0.71 to 1.12 nm using DMSO intercalation, did not yield a significant enhancement in the sorption capacity of kaolinite, indicating that the surface and edge sites of the clay are more energetically favored. EDS mapping and elemental analysis of the surface of kaolinite and clinoptilolite revealed more intense signals on the surface of the latter with an even distribution of sorbed Cs+ onto the surfaces of both minerals.  相似文献   

15.
The sorption of cesium and cobalt on kaolinite and montmorillonite were followed by radiotracer method. The sorption of cesium can be described by a Freundlich isotherm. Cobalt sorption on clays equilibrated in cesium chloride solutions significantly differs for kaolinite and montmorillonite due to their differences in sites available for cation sorption and changes in solution chemistry.Heterogeneous exchange of cesium ions between clay and the surrounding electrolyte was performed in order to obtain information about clay/electrolyte systems equilibration. An interplay of different processes included in the attainment of true chemical equilibria of clay/electrolyte systems are responsible for the change of clay surface properties and total exchange capacity.  相似文献   

16.
Batch type experiments of U(VI) sorption on a reference montmorillonite(SWy-2) were carried out over wide ranges of pH, ionic strength, and totalU(VI) concentration. The influences of these factors on the sorption behaviorof U(VI) were analyzed to gain a macroscopic understanding of the sorptionmechanism. The sorption of U(VI) on montmorillonite showed a distinct dependencyon ionic strength. When it was low (0.01 or 0.001M), almost all of the totalU(VI) was sorbed over the whole pH range studied, therefore, the dependencyon pH was not clear. But the sorption of U(VI) on montmorillonite showed asorption pH edge in the high ionic strength condition (0.1M), like those onother clay minerals, kaolinite and chlorite. A mechanistic model was establishedby considering the mineral structure of montmorillonite together with ourprevious EPR result, which successfully explained the U(VI) sorption on montmorilloniteover the whole range of experimental conditions. The model describes the U(VI)sorption on montmorillonite as simultaneous and competitive reactions of ionexchange and surface complexation, whose relative contribution to the totalsorption depends on pH and ionic strength. At low ionic strength and low pHconditions, ion exchange was the dominant mechanism for U(VI) sorption onmontmorillonite. At high ionic strength and high pH conditions, surface complexationwas the dominant  相似文献   

17.
张树芹  侯万国 《中国化学》2007,25(10):1455-1460
Layered double hydroxide (LDH) with a Mg/Al molar ratio of 1 : 1 was synthesized by using a co-precipitation method and its calcined product (CLDH) was obtained by calcination of the MgAl-LDH at 500 ℃. The sorption removal of Pb^2+ from solution was investigated, finding that both LDH and CLDH show good sorption ability and they could be used as a new type of environmental sorbent for the removal of Pb^2+ from water. The sorption kinetics and the sorption isotherms of Pb^2+ on both LDH and CLDH can be described by the pseudo-second order kinetics and Freundlich isotherm, respectively, under the studied conditions. The sorption amounts of Pb^2+ on LDH and CLDH are independent of pH in a pH range of about 3-10. The presence of NaNO3 may inhibit the sorption of Pb^2+ on LDH while hardly affect that on CLDH. The sorption mechanism of Pb^2+ on LDH and CLDH may be attributed to the surface precipitation and the surface complex adsorption. The surface complex adsorption may be further distinguished to the chemical binding adsorption forming the inner-sphere surface complexes and the electrostatic binding adsorption forming the outer-sphere surface complexes. The sorption mechanism of Pb^2+ on LDH may be attributed to the surface precipitation and the electrostatic binding adsorption, while that on CLDH may be attributed to the surface precipitation and the chemical binding adsorption.  相似文献   

18.
Hydrous amorphous Al (HAO), Fe (HFO), and Mn (HMO) oxides are ubiquitous in the subsurface as both discrete particles and coatings and exhibit a high affinity for heavy metal contaminants. To assess risks associated with heavy metals, such as Pb, to the surrounding environment and manage remedial activities requires accurate mechanistic models with well-defined transport parameters that represent sorption processes. Experiments were conducted to evaluate Pb sorption to microporous Al, Fe, and Mn oxides, as well as to montmorillonite and HAO-coated montmorillonite. Intraparticle diffusion, a natural attenuating process, was observed to be the rate-limiting mechanism in the sorption process, where best-fit surface diffusivities ranged from 10(-18) to 10(-15) cm(2) s(-1). Specifically, diffusivities of Pb sorption to discrete aluminum oxide, aluminum oxide-coated montmorillonite, and montmorillonite indicated substrate surface characteristics influence metal mobility where diffusivity increased as affinity decreased. Furthermore, the diffusivity for aluminum oxide-coated montmorillonite was consistent with the concentrations of the individual minerals present and their associated particle size distributions. These results suggest that diffusivities for other coated systems can be predicted, and that oxide coatings and montmorillonite are effective sinks for heavy metal ions.  相似文献   

19.
This study investigates Cu and Zn removal onto binary mixed mineral sorbents from simulated wastewater, relevant to streams impacted by acid mine drainage and effluents. Mixed suspensions of kaolinite/montmorillonite and kaolinite/goethite exhibited different sorption behavior from the single mineral components, reducing Cu and Zn removal (except Cu sorbed on montmorillonite/goethite) over the range of pH investigated. Cu and Zn removal by the electrolyzed systems showed a complex response to increased ionic strength, which increased solid concentration, leading to lower Cu and Zn sorption. Enhanced Cu sorption on the montmorillonite/goethite as age increased may be attributed to increased hydroxylation of the mineral surface resulting in the formation of new reactive sites.  相似文献   

20.
Amorphous hydrous manganese oxide (HMO) is an important mineral in soils and sediments influencing the mobility and bioavailability of metal contaminants. In this study, nickel and lead sorption to discrete HMO and HMO-coated montmorillonite was investigated mechanistically. The effect of pH and concentration revealed that when normalized to the mass of oxide present, the HMO-coated montmorillonite behaved similarly to the discrete Mn oxide, where both ions sorbed onto HMO-coated montmorillonite as inner-sphere complexes. Ni coordinated to the vacancy sites in the Mn oxide structure, while Pb formed bidentate corner-sharing complexes. These coordination environments were observed not only as a function of loading, pH, and ionic strength, but also in long-term studies where sorption increased by as much as 100% (from 6x10(-4) to 1.2x10(-3) mol Ni/g HMO-coated montmorillonite). In this slower sorption process, intraparticle diffusion, the internal surface sites along microporous walls appear to be no different than external ones. Best fit diffusivities ranged from 10(-12) to 10(-13) cm2/s for Ni and 10(-17) to 10(-20) cm2/s for Pb. The significant difference in the diffusivities for the two ions is consistent with site activation theory, where theoretical surface diffusivities were predicted and given their error were in agreement with experimental results. Mn oxides sequester heavy metals in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号