首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We report on the phase measurements on a quantum dot containing a single electron in the Kondo regime. Transport takes place through a single orbital state. Although the conductance is far from the unitary limit, we measure directly, for the first time, a transmission phase as theoretically predicted of pi/2. As the dot's coupling to the leads is decreased, with the dot entering the Coulomb blockade regime, the phase reaches a value of pi. Temperature shows little effect on the phase behavior in the range 30-600 mK, even though both the two-terminal conductance and amplitude of the Aharonov-Bohm oscillations are strongly affected. These results also suggest that previous phase measurements involved transport through more than a single level.  相似文献   

2.
The problem of electron transport by means of a dumbbell shaped shuttle in strong Coulomb blockade regime is solved. The electrons may be shuttled only in the cotunneling regime during the time spans when both shoulders of the shuttle approach the metallic banks. The conventional Anderson-like tunneling model is generalized for this case and the tunneling conductance is calculated in the adiabatic regime of slow motion of the shuttle. Non-adiabatic corrections are briefly discussed  相似文献   

3.
We performed measurements at helium temperatures of the electronic transport in the linear regime in an InAs quantum wire in the presence of a charged tip of an atomic force microscope (AFM) at low electron concentration. We show that at certain concentration of electrons, only two closely placed quantum dots, both in the Coulomb blockade regime, govern conductance of the whole wire. Under this condition, two types of peculiarities—wobbling and splitting—arise in the behavior of the lines of the conductance peaks of Coulomb blockade. These peculiarities are measured in quantum-wire-based structures for the first time. We explain both peculiarities as an interplay of the conductance of two quantum dots present in the wire. Detailed modeling of wobbling behavior made in the framework of the orthodox theory of Coulomb blockade demonstrates good agreement with the obtained experimental data.  相似文献   

4.
Linear and nonlinear transport through a quantum dot that is weakly coupled to ideal quantum leads is investigated in the parameter regime where charging and geometrical quantization effects coexist. The exact eigenstates and spins of a finite number of correlated electrons confined within the dot are combined with a rate equation. The current is calculated in the regime of sequential tunneling. The analytic solution for an Anderson impurity is given. The phenomenological charging model is compared with the quantum mechanical model for interacting electrons. The current-voltage characteristics show Coulomb blockade. The excited states lead to additional fine-structure in the current voltage characteristics. Asymmetry in the coupling between the quantum dot and the leads causes asymmetry in the conductance peaks which is reversed with the bias voltage. The spin selection rules can cause a ‘spin blockade’ which decreases the current when certain excited states become involved in the transport. In two-dimensional dots, peaks in the linear conductance can be suppressed at low temperatures, when the total spins of the corresponding ground states differ by more than 1/2. In a magnetic field, an electron number parity effect due to the different spins of the many-electron ground states is predicted in addition to the vanishing of the spin blockade effect. All of the predicted features are consistent with recent experiments.  相似文献   

5.
We report low-temperature conductance measurements in the Coulomb blockade regime on two nominally identical tunnel-coupled quantum dots in parallel defined electrostatically in the two-dimensional electron gas of a GaAs/AlGaAs heterostructure. At low interdot tunnel coupling we find that the conductance measured through one dot is sensitive to the charge state of the neighboring dot. At larger interdot coupling the conductance data reflect the role of quantum charge fluctuations between the dots. As the interdot conductance approaches 2e2/h, the coupled dots behave as a single large dot.  相似文献   

6.
The rate-equation approach is used to describe sequential tunneling through a molecular junction in the Coulomb blockade regime. Such device is composed of molecular quantum dot (with discrete energy levels) coupled with two metallic electrodes via potential barriers. Based on this model, we calculate nonlinear transport characteristics (conductance-voltage and current-voltage dependences) and compare them with the results obtained within a self-consistent field approach. It is shown that the shape of transport characteristics is determined by the combined effect of the electronic structure of molecular quantum dots and by the Coulomb blockade. In particular, the following phenomena are discussed in detail: the suppression of the current at higher voltages, the charging-induced rectification effect, the charging-generated changes of conductance gap and the temperature-induced as well as broadening-generated smoothing of current steps.  相似文献   

7.
Small-size semiconductor ring interferometers operating in the Coulomb blockade regime have been experimentally and theoretically studied. The conductance as a function of the gate voltage exhibits narrow quasiperiodic peaks, which are further split into doublets. Based on the experimental structural data, a three-dimensional electrostatic potential, the energy spectrum, and the single-electron transport in the interferometer were modeled. The electron system can be divided into two triangular quantum dots connected by single-mode microcontacts to each other and to the reservoirs. A model of quantum dot charging in this system is proposed that explains the appearance of doublets in the conductance-gate voltage characteristics.  相似文献   

8.
Coulomb blockade oscillations are found in the electron thermal conductance of a quantum dot (nanocrystal) in the regime of weak coupling with two electrode leads that is calculated within a linear response theory. An analytical expression is obtained in the quantum limit where electron level spacing is non-negligible. The effect of confinement on the electron thermal conductance is thereby explicitly shown. It is shown that in the quantum limit the periodicity of the Coulomb-blockade oscillations of the electron thermal conductance is the same as of the conductance. The shape and the magnitude of the electron thermal conductance depend explicitly on the temperature and the energy level spacing. It is found that the electron thermal conductance decreases nearly exponentially with increasing confinement and decreasing temperature.  相似文献   

9.
We report measurements of spin transitions for GaAs quantum dots in the Coulomb blockade regime and compare ground and excited state transport spectroscopy to direct measurements of the spin polarization of emitted current. Transport spectroscopy reveals both spin-increasing and spin-decreasing transitions, as well as higher-spin ground states, and allows g factors to be measured down to a single electron. The spin of emitted current in the Coulomb blockade regime, measured using spin-sensitive electron focusing, is found to be polarized along the direction of the applied magnetic field regardless of the ground state spin transition.  相似文献   

10.
We study transport through a strongly correlated quantum dot and show that Coulomb blockade can appear even in the presence of perfect contacts. This conclusion arises from numerical calculations of the conductance for a microscopic model of spinless fermions in an interacting chain connected to each lead via a completely open channel. The dependence of the conductance on the gate voltage shows well defined Coulomb blockade peaks which are sharpened as the interaction strength is increased. Our numerics is based on the embedding method and the DMRG algorithm. We explain the emergence of Coulomb blockade with perfect contacts by a reduction of the effective coupling matrix elements between many-body states corresponding to successive particle numbers in the interacting region. A perturbative approach, valid in the strong interaction limit, yields an analytic expression for the interaction-induced suppression of the conductance in the Coulomb blockade regime.  相似文献   

11.
The electron transport properties of well-contacted individual single-walled carbon nanotubes are investigated in the ballistic regime. Phase coherent transport and electron interference manifest as conductance fluctuations as a function of Fermi energy. Resonance with standing waves in finite-length tubes and localized states due to imperfections are observed for various Fermi energies. Two units of quantum conductance 2G(0) = 4e(2)/h are measured for the first time, corresponding to the maximum conductance limit for ballistic transport in two channels of a nanotube.  相似文献   

12.
A generalized finite element formulation is proposed for the study of the spin-dependent ballistic transport of electron through the two-dimensional quantum structures with Rashba spin-orbit interactions (SOI). Thetransmission coefficient, conductance, the total and local polarization are numerically calculated and discussed as the Rashba coefficient, the geometric sizes, and incident energy are changed in the T-shaped devices. Some interesting features are found in the proper parameter regime. The polarization has an enhancement as the Rashba coefficient becomes stronger. The polarization valley is rigid in the regime of the conductance plateaus since the local interference among the polarized multi-wave modes. The Rashba interactions coupling to geometry in sizes could form the structure-induced Fano-Rashba resonance. In the wider stub, the localized spin lattice of electron could be produced. The conductance plateaus correspond to weakpolarizations. Strong polarizations appear when the stub sizes, incident energy, and the Rashba coupling coefficient are matched. The resonances are formed in a wide Fermi energy segment easily.  相似文献   

13.
14.
We investigate quantum mechanical electron transport along the long axis of the DNA molecule using an effective tight-binding model. The overall contour plot of transmission, the current-voltage characteristics, and the differential conductance are examined for the variation of backbone onsite energy, the energy-dependent hopping strength, and the contact coupling between the leads and the DNA molecule. It is shown that as backbone asymmetry increases, the merging and collapse of the two mini-bands take place and an extra resonance peak in the transmission appears. In addition, we present the modulation of voltage threshold in the current-voltage curves and a double-peak structure in the differential conductance due to the disappearance of the merged mini-band. Finally, in the Coulomb blockade regime of asymmetric contact coupling, a distinct and under-unity resonance in the transmission appears due to the interference effects between the DNA molecular bands and the electronic structure of the leads at the DNA-lead interface.  相似文献   

15.
The conductance of a quantum ring has been calculated on the basis of the tunneling Hamiltonian in the quasiballistic regime of the motion of electrons with allowance for the spin-orbit interaction. The effect of the scattering of electrons by a single short-range interacting impurity in the quantum ring on the tunneling electron current is analyzed. Two types of impurities, spinless and paramagnetic, are considered. The conductance symmetry is discussed for various electron-spin orientations with respect to change in the sign of the magnetic flux through the quantum ring.  相似文献   

16.
Numerical results for transport properties of two coupled double-level quantum dots (QDs) strongly suggest that under appropriate conditions the dots develop a novel ferromagnetic (FM) correlation at quarter filling (one electron per dot). In the strong coupling regime (Coulomb repulsion larger than electron hopping) and with interdot tunneling larger than tunneling to the leads, an S=1 Kondo resonance develops in the density of states, leading to a peak in the conductance. A qualitative "phase diagram," incorporating the new FM phase, is presented. In addition, the necessary conditions for the FM regime are less restrictive than naively believed, leading to its possible experimental observation in real QDs.  相似文献   

17.
By applying the slave boson technique, we have studied the electron transport through double-dot Aharonov-Bohm interferometer in the Kondo regime. For the system with symmetric quantum dots, the linear conductance is shown to be enhanced by Kondo effect, but it is suppressed in the deep dot level regime in the presence of nonzero magnetic flux. The Aharonov-Bohm oscillations of the conductance are also investigated.  相似文献   

18.
Energy transport, in the linear response regime, through a two-level quantum dot/molecule attached to ferromagnetic leads is studied in the Coulomb blockade region with use of the Green function formalism. Thermal conductance and figure of merit ZT are calculated and discussed for two configurations of magnetic moments and different polarization factor in the leads. A strong dependence of ZT on polarization is found. A substantial enhancement of efficiency can be observed in molecular junctions with one of energy levels weakly coupled to the leads. Moreover, in systems, in which spin accumulation in electrodes is important, a quite considerable spin efficiency can be expected.  相似文献   

19.
We investigate the influence of electromagnetic fluctuations on quantum transport in a two-dimensional electron gas. We calculate the conductance of a quantum point contact under the influence of transport and gate-voltage fluctuations at finite temperature, using a generalized Landauer-Büttiker approach. The fluctuations are described by a suitable bath of bosons. In contrast to fluctuations of the gate-voltage, transport voltage fluctuations can completely block the electron transport at T = 0. This blockade is lifted as a result of finite temperature of the electrons in the Fermi reservoirs and also of the coupled bosons. In a typical experiment, these two temperatures need not to be the same. We show that the temperature of the coupled bosons limits the accuracy of the conductance quantization of a quantum point contact to a few percent.  相似文献   

20.
We study the linear conductance of single electron devices showing Coulomb blockade phenomena. Our approach is based on a formally exact path integral representation describing electron tunneling nonperturbatively. The electromagnetic environment of the device is treated in terms of the Caldeira-Leggett model. We obtain the linear conductance from the Kubo formula leading to a formally exact expression which is evaluated in the semiclassical limit. Specifically we consider three models. First, the influence of an electromagnetic environment of arbitrary impedance on a single tunnel junction is studied focusing on the limits of large tunneling conductance and high to moderately low temperatures. The predictions are compared with recent experimental data. Second, the conductance of an array of N tunnel junctions is determined in dependence on the length N of the array and the environmental impedance. Finally, we consider a single electron transistor and compare our results for large tunneling conductance with experimental findings. Received 2 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号