首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Metal promoted zirconia-based oxide sorbents, such as Pt–ZrO2/Al2O3 for NO x have been investigated. To clarify the role of the catalyst component, sorption of NO and NO2 was compared using the samples with and without Pt. The catalytic oxidation of NO to NO2 and successively to nitrate ions is an important role for the Pt catalyst. The experimental results indicate that a high-temperature calcination is essential to remove residual Cl from Pt–ZrO2–Al2O3 prepared from H2PtCl6 in order to provide more active NO x sorption sites. Of M–ZrO2–Al2O3 samples investigated, ruthenium as well as Pt demonstrated relatively good performance as a catalyst component in the sorbent. The FT-IR spectra after sorption of NO and NO2 demonstrated a strong band attributed to stored nitrate ions. The Pt catalyst was more resistant to sulfur poisoning than a base metal catalyst. However, the NO x sorptive capacities of the Pt–ZrO2/Al2O3 sorbents were expected to be deteriorated in dilute SO2 as far as observed from FT-IR spectra.  相似文献   

2.
(n)MnOx–(1?n)CeO2 binary oxides have been studied for the sorptive NO removal and subsequent reduction of NOx sorbed to N2 at low temperatures (≤150 °C). The solid solution with a fluorite-type structure was found to be effective for oxidative NO adsorption, which yielded nitrate (NO? 3) and/or nitrite (NO? 2) species on the surface depending on temperature, O2 concentration in the gas feed, and composition of the binary oxide (n). A surface reaction model was derived on the basis of XPS, TPD, and DRIFTS analyses. Redox of Mn accompanied by simultaneous oxygen equilibration between the surface and the gas phase promoted the oxidative NO adsorption. The reactivity of the adsorbed NOx toward H2 was examined for MnOx–CeO2 impregnated with Pd, which is known as a nonselective catalyst toward NO–H2 reaction in the presence of excess oxygen. The Pd/MnOx–CeO2 catalyst after saturated by the NO uptake could be regenerated by micropulse injections of H2 at 150 °C. Evidence was presented to show that the role of Pd is to generate reactive hydrogen atoms, which spillover onto the MnOx–CeO2 surface and reduce nitrite/nitrate adsorbing thereon. Because of the lower reducibility of nitrate and the competitive H2–O2 combustion, H2–NO reaction was suppressed to a certain extent in the presence of O2. Nevertheless, Pd/MnOx–CeO2 attained 65% NO-conversion in a steady stream of 0.08% NO, 2% H2, and 6% O2 in He at as low as 150 °C, compared to ca. 30% conversion for Pd/γ–Al2O3 at the same temperature. The combination of NOx-sorbing materials and H2-activation catalysts is expected to pave the way to development of novel NOx-sorbing catalysts for selective deNOx at very low temperatures.  相似文献   

3.
《Comptes Rendus Chimie》2014,17(7-8):687-700
The influence of the presence of H2O on the contact between carbon, used as model soot, and a model four-way catalyst (1% Pt–10% BaO/Al2O3) was investigated. NOx adsorption/TPD cycles at 300 °C together with XRD, XPS and DRIFTS characterizations showed that only surface nitrate species are destabilized by the carbon present in the catalytic bed, leading to a decrease of the NOx storage capacity and carbonate species formation. In another way, injection of water in the reactive gas flow decreases also the NOx storage capacity of the catalyst, but promotes the formation of stable nitrate species. A non-cumulative effect of carbon and water was observed. It was proposed that a competition between the destabilization, by carbon, of weakly bonded surface nitrate species and the enhancement of bulk nitrate species formation in the presence of water occurs.  相似文献   

4.
It was found that only bridging and bidentate nitrate complexes were formed on the surface of Pt,Cu/ZrO2-pillared interlayered clay (ZrO2-PILC) upon the interaction with a flow of the (0.2% NO + 2.5% O2)/N2 mixture, whereas monodentate and nitrosyl complexes were not detected. The concentration of nitrate complexes on Pt,CU/ZrO2-PILC was higher and the strength of their bond to the surface was weaker than those on unmodified ZrO2-PILC. Isopropoxide and acetate complexes and coordinatively bound acetone were formed on the surface in the interaction of Pt,Cu/ZrO2-PILC with a flow of the (0.2% C3H6 + 2.5% O2)/N2 mixture. The supporting of Pt and Cu onto zirconium dioxide pillars resulted in considerable changes in the concentration and the temperature region of the existence of hydrocarbon surface compounds, as compared with ZrO2-PILC. Under reaction conditions at relatively low temperatures, isopropoxide and nitrate intermediates on the surface of Pt,Cu/ZrO2-PILC formed a complex structurally similar to adsorbed dinitropropane. At elevated temperatures, a surface nitromethane complex was formed in the interaction of the acetate complex with nitrate species. The spectrokinetic measurements demonstrated that the apparent rate constants of consumption of nitrate and nitroorganic complexes considerably increased on going from ZrO2-PILC to Pt,Cu/ZrO2-PILC. Moreover, the constants of consumption of nitroorganic and nitrate complexes were similar for both of the catalysts. This fact suggests that, on the test catalysts, nitroorganic complexes were reaction intermediates in the selective catalytic reduction of NOx (NOx SCR) with hydrocarbons. The found differences in the activation species and thermal stabilities of reactants can explain different activities of ZrO2-PILC and Pt,Cu/ZrO2-PILC in the SCR reaction of NOx with propylene in an excess of oxygen.  相似文献   

5.
The reactions of the platinum and rhodium model catalysts applied to aluminum oxide with NOx (10 Torr NO + 10 Torr O2) were studied by X-ray photoelectron spectroscopy. The reaction conducted at room temperature formed on the surface of the oxide support the NO 3,s ? nitrate ions characterized by the N1s line at 407.4 eV and O1s line at 533.1 eV and the NO 2,s ? nitrite ions characterized by the N1s line with a binding energy of 404.7 eV. At the same time, the Pt4f and Rh3d lines of the supported platinum particles are shifted toward higher binding energies by 0.5–1.0 eV and 0.7–1.2 eV, respectively. It is assumed that the binding energies increase due to changes in the chemical state of the platinum metal in which oxygen is dissolved. The reaction of NOx with Pt/Al2O3 at 200°C forms platinum oxide defined by the Pt4f 7/2 line with a binding energy of 72.3 eV.  相似文献   

6.
We present the principles of stoichiography and a reference-free stoichiographic differential (separating) dissolution method used to study the composition and structure of thin films and nanostructured systems: HTS films with 123 different compositions, Al–Au–Sn–Co–Mn, Si/SiO2/Ni(Cr)–Cu–Cu2S, Cr–Cu–S, and Cu–S multilayer films, Bi–Ti–O films on Ru/SiO2/Si, Mn1–xZn x S, and ZnS–EuS supports, and also nanostructured manganese ferrite in borate glass matrices, nanodisperse composite sorbents and the Co–Si–Pt–O/Al2O3 catalyst modified by Pt nanoparticles, and oxide catalyst precursor Fe2Co/Al2O3 for the synthesis of carbon nanotubes.  相似文献   

7.
The structure, texture, and acid properties of platinum catalysts on oxide (Al2O3, ZrO2, ZrO2–Al2O3) and borate-containing supports (B2O3–Al2O3, B2O3–ZrO2) are studied. The catalysts are tested in the process of hydrocracking sunflower-seed oil at 380°C, 4.0 MPa, and a weight stock feed rate of 1.0 h–1. It has been found that aluminum oxide (A) contains the γ-Al2O3 phase, zirconium dioxide (Z) includes 85 and 15 rel. % of the monoclinic (M) and tetragonal (T) phases, respectively, while zirconium dioxide with the addition of 2.5 wt % Al2O3 (ZA) comprises 14 and 86 rel. % of the M–ZrO2 and T–ZrO2 phases, respectively. The B2O3–Al2O3 (BA) and B2O3–ZrO2 (BZ) systems modified with boron oxide (20 wt %) are X-ray amorphous. A Pt/BA catalyst differs from a Pt/A catalyst, while a Pt/BZ catalyst has a larger specific surface area and acidity than Pt/Z and Pt/ZA catalysts and contains Bronsted acidic centers (BACs) along with Lewis acidic centers (LACs). Only LACs are present on the surface of Pt/A, Pt/Z, and Pt/ZA catalysts. The LAC/BAC ratio in Pt/BA and Pt/BZ catalysts is 0.3 and 1.0, respectively. All the catalysts provide complete oil conversion to give C5+ hydrocarbons with a yield of 81.7–87.3 wt %. Pt/A catalyzes mainly decarboxylation and hydrogenation–dehydration reactions, while Pt/Z and Pt/ZA provide decarboxylation. The yield of diesel fraction reaches 71.8–73.9 wt % with an n-alkane content of 94.0–95.9 wt %. One-stage oil hydrocracking with the prevalence of hydrodecarbonylation and hydrogenation–dehydration reactions occurs on Pt/BA and Pt/BZ catalysts for 20 h to give the yield of the diesel fraction of at least 81.4 and 74.4 wt % and the total content of iso-alkanes and cycloalkanes of at least 28.3 and 60.7 wt %, respectively.  相似文献   

8.
This study investigated the selective catalytic reduction (SCR) of nitrogen oxides (NOx) with hydrocarbon in the presence of excess oxygen using various composition ratios of Pt/Al2O3, Rh/Al2O3 catalyst mixtures. The composition ratios were 1:1, 1:2, 2:1, 1:3 and 3:1 of 1 wt% Pt/Al2O3 and Rh/Al2O3, which are known to exhibit efficient NOx reduction at low and high temperatures among the noble metal catalysts. Experiments conducted on a single reductant revealed that more efficient NOx conversion could be obtained when Pt/Al2O3 and Rh/Al2O3 were mixed at a ratio of 3:1, rather than 1:1 or 1:3. In a single reductant condition, C3H6 800 ppm (2400 ppmC1) and 400 ppm (1200 ppmC1) exhibited 50% and 38% NOx conversion efficiency at 200°C, respectively. However, NOx conversion efficiency gradually decreased when temperatures were increased above 250°C. With regard to Pt/Al2O3 and Rh/Al2O3 ratio, higher ratios of Rh/Al2O3 activated this Pt+Rh/Al2O3 catalyst in the high temperature range.  相似文献   

9.
The role of Al2O3-ZrO2 and Al2O3-TiO2 sol-gel prepared supports in the activity of platinum for the NO reduction by CO under oxidizing conditions has been studied. 27Al MAS-NMR spectra have shown the formation of pentacoordinate AlV in alumina-zirconia support. ZrO2 or TiO2 crystalline phases cannot be identified by XRD diffraction, suggesting the formation of nanosized structures supported on alumina. When the reaction was carried out in presence of oxygen, large amounts of NO2 were observed on Pt/Al2O3-ZrO2catalyst, while the formation of N2O is more prononced on Pt/Al2O3-TiO2 catalyst. The effect of water during NO reduction is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
赵娇娇  余运波  韩雪  贺泓 《催化学报》2013,34(7):1407-1417
分别以La2O2CO3, CeO2, ZrO2和Al2O3为载体, 采用浸渍法制备了Ni基重整催化剂, 并以正十二烷模拟车载燃油进行催化重整反应以同时制备小分子碳氢化合物(HCs)和H2, 考察了其在4wt%Ag/Al2O3上选择性催化还原(HC-SCR)氮氧化物(NOx)的性能. 采用N2吸附-脱附、X射线粉末衍射、H2程序升温还原和热重等手段对Ni基催化剂进行了表征. 结果表明, 随着重整催化剂氧化还原性能增强, 产物中H2浓度增加, 可参与SCR反应的HCs含量减少, 从而导致重整-SCR耦合体系上NOx净化活性温度窗口向低温移动, NOx最高转化率降低. Ni/ZrO2+Ag/Al2O3耦合体系中H2/HCs符合SCR反应所需的最优比例, 在柴油车典型排气温度范围内表现出良好的NOx净化能力. 同时, 在Ni/ZrO2+Ag/Al2O3耦合体系上考察了其燃油重整-SCR的活性稳定性. 结果显示, 重整催化剂的耐久性有待进一步提高.  相似文献   

11.
The activity of Pt, Rh, and Ni catalysts deposited on Al2O3 and tungsten-containing catalysts 20% H4SiW12O40/ZrO2 and 15% WOx/ZrO2 in the hydrogenation of toluene and toluene ring opening and isomerization in the presence of hydrogen was studied. Under experimental conditions (160–360°C, 2.2 MPa), the main reactions on Rh/Al2O3 were the hydrogenation of toluene into methylcyclohexane, hydrogenolysis into isoheptanes, and hydrocracking into alkanes C1–C6. On Pt, Rh, and Ni catalysts on carriers with strong acid properties, the isomerization of the six-membered into five-membered ring followed by hydrogenolysis (hydrocracking) of alkylcyclopentanes occurred. The yield of heptane isomers, however, did not exceed 13%. The activity of Pt and Rh catalysts on a high-acidity carrier (WOx/ZrO2) in hydrocracking was much higher than that of catalysts based on deposited heteropoly acid. The yields of hydrogenolysis (hydrocracking) products on Ni/WOx/ZrO2 were much lower than on Pt(Rh)/WOx/ZrO2. The highest yield of ring opening products (isoheptanes and n-heptane) was obtained with layered loading of two catalysts; it reached 58 wt % at 300°C and a 2.2 MPa pressure, which was 4.5 and 2 times higher than the yield obtained on Ni-Pt/WOx/ZrO2 and 2% Rh/Al2O3 catalysts. Hydrodemethylation was not the main direction of toluene transformations on any of the catalysts studied.  相似文献   

12.
The interaction of the model catalysts Rh/Al2O3, Pd/Al2O3, Pt/Al2O3, and Pt/SiO2 with NO x (mixture of 10 Torr of NO and 10 Torr of O2) was studied by X-ray photoelectron spectroscopy (XPS). Samples of the model catalysts were prepared under vacuum conditions as oxide films ≥100 Å in thickness on tantalum foil with evaporated platinum-group metal particles. According to transmission electron microscopic data, the platinum-group metal particle size was several nanometers. It was found by XPS that the oxidation of Rh and Pd nanoparticles in their interaction with NO x occurs already at room temperature. The particles of platinum were more stable: their oxidation under the action of NO x was observed at elevated temperatures of ~300°C. At room temperature, the interaction of platinum nanoparticles with NO x hypothetically leads to the dissolution (insertion) of oxygen atoms in the bulk of the particles with the retention of their metallic nature. It was found that dissolved oxygen is much more readily reducible by hydrogen than the lattice oxygen of the platinum oxide particles.  相似文献   

13.
刘爽  吴晓东  林雨  李敏  翁端 《催化学报》2014,35(3):407-415
通过在Ce0.6Zr0.4O2载体上浸渍Pt(NO32制得Pt/Ce0.6Zr0.4O2催化剂,该催化剂在松散接触条件下,于NO+O2或O2气氛中均表现出比Pt/Al2O3更好的碳烟氧化性能. 进一步研究表明,Pt/Ce0.6Zr0.4O2催化剂中的Pt 与Ce0.6Zr0.4O2存在相互作用,使得催化剂在一定温度范围内对活性氧的利用率大为提高,从而促进了气氛中NO↔NO2的循环,乃至碳烟与NO2的反应和碳烟表面含氧中间物种的生成;更重要的是,这部分活性氧本身可加速含氧中间物种的分解. 因此,在NO + O2的气氛中,Pt/Ce0.6Zr0.4O2催化剂的碳烟起燃温度比Pt/Al2O3降低了34 ℃.  相似文献   

14.
We studied on the function of the metal in the sulfated zirconia(SO42–/ZrO2) catalyst for the isomerization reaction of light paraffins. The addition of Pt to the SO42–/ZrO2 carrier could keep the high catalytic activity. The improvement in this isomerization activity is because Pt promotes removal of the coke precursor deposited on the catalyst surface. Though this catalytic function was observed in other transition metals, such as Pd, Ru, Ni, Rh and W, Pt exhibited the highest effect among them. It was further found that the Pd/SO42–/ZrO2–Al2O3 catalyst possessed a catalytic function for desulfurization of sulfur-containing light naphtha in addition to the skeletal isomerization. The sulfur tolerance of catalyst depended on the method of adding Pd, and the catalyst prepared by impregnation of the SO42–/ZrO2–Al2O3 with an aqueous solution of Pd exhibited the highest sulfur tolerance.Further, we investigated the improvement in sulfur tolerance of the Pt/SO42–/ZrO2–Al2O3 catalyst by impregnation of Pd. The results of EPMA analysis indicated that this catalyst was a hybrid-type one (Pt/SO42–/ZrO2–Pd/Al2O3) in which Pt/SO42–/ZrO2 particles and Pd/Al2O3 particles adjoined closely. This hybrid catalyst possessed a very high sulfur tolerance to the raw light naphtha that was obtained from the atmospheric distillation apparatus, although this light naphtha contained much sulfur. We assume that such a high sulfur tolerance in the hybrid catalyst is brought about by the isomerization function of Pt/SO42–/ZrO2 particles and the hydrodesulfurization function of Pd/Al2O3 particles. Besides, since the hybrid catalyst also provides high catalytic activity in the isomerization of HDS light naphtha, we suggest that the Pd/Al2O3 particles supply atomic hydrogen to the Pt/SO42–/ZrO2 particles by homolytic dissociation of gaseous hydrogen and also enhance the sulfur tolerance of Pt/SO42–/ZrO2 particles. Finally, we also propose the most suitable location of Pd and Pt in the metal-supported SO42–/ZrO2–Al2O3 catalyst.  相似文献   

15.
The interaction of NO with the surface of model Ag/Al2O3/FeCrAl catalysts containing Ag nanoparticles of different size (1 and 3 nm) was studied. The use of the Auger parameter αAg (E b(Ag3d5/2) + E kin(Ag MVV)) made it possible to reliably identify the change in the chemical state of silver cluster upon their interaction with О2 and NO. The oxygen treatment leads to the oxidation of small Ag nanoparticles (1 nm) and formation of AgO x clusters resulted in the intensive formation of nitrite—nitrate structures on the step of the interaction with NO. These structures are localized on both the silver clusters and Al2O3 surface. An increase in the size of Ag0 nanoparticles to 3 nm results in an increase in the stability of these structures and impedes the Ag0 → AgO x transition, due to which the formation of surface groups NO2 /NO3 is suppressed. The data obtained make it possible to explain the dependence of the activity of the Ag/Al2O3 catalysts in the selective reduction of NO on the Ag nanoparticle size.  相似文献   

16.
The two types of electrochemical sensors using stabilized zirconia and the oxide sensing electrode (SE) were developed for NOx detection at high temperatures. For the mixed-potential-type sensor, NiCr2O4 was found to give fairly excellent NOx sensing characteristics in air among several spinel-type oxides tested. This NOx sensor provided a linear correlation between EMF and the logarithm of NO or NO2 concentration in the range 25–436 ppm and in the temperature range 550–650°C. With fixed bias voltage being applied between the SE (oxide) and the counter (Pt) electrode (CE), the EMF between SE and the reference (Pt) electrode (RE) was measured as a sensing signal. The NiCr2O4-attached tubular device was found to provide selective response to NO over NO2 if SE was polarized at +175 mV versus RE. It was also found that this device gave selective response to NO2 over NO, if SE was polarized at −250 mV versus CE. The new design of the planar device was proposed to avoid the cross-sensitivities to the others gases usually coexisting in car exhausts.  相似文献   

17.
The nonthermal plasma generated in a shielded sliding discharge reactor was used to reform diesel for the hydrocarbon-selective catalytic reduction (HC-SCR) of NOx on Ag/Al2O3 catalysts. Compared with raw diesel, the reformed diesel enhanced the NOx reduction efficiency, mitigated hydrocarbon poisoning of the catalyst and reduced the fuel penalty for the HC-SCR reaction. The NOx conversion values obtained with a commercial Ag/Al2O3 catalyst exceeded that of a 2.0 wt% Ag/Al2O3 catalyst prepared by wet impregnation. A significant amount of NH3 was produced as a by-product during the HC-SCR reaction, which suggests that further NOx conversion enhancement can be achieved by placing a second NH3-SCR catalyst in series with the Ag/Al2O3 catalyst.  相似文献   

18.
This review paper reports the recent progress concerning the application of nickel–alumina–zirconia based catalysts to the ethanol steam reforming for hydrogen production. Several series of mesoporous nickel–alumina–zirconia based catalysts were prepared by an epoxide-initiated sol–gel method. The first series comprised Ni–Al2O3–ZrO2 xerogel catalysts with diverse Zr/Al molar ratios. Chemical species maintained a well-dispersed state, while catalyst acidity decreased with increasing Zr/Al molar ratio. An optimal amount of Zr (Zr/Al molar ratio of 0.2) was required to achieve the highest hydrogen yield. In the second series, Ni–Al2O3–ZrO2 xerogel catalysts with different Ni content were examined. Reducibility and nickel surface area of the catalysts could be modulated by changing nickel content. Ni–Al2O3–ZrO2 catalyst with 15 wt% of nickel content showed the highest nickel surface area and the best catalytic performance. In the catalysts where copper was introduced as an additive (Cu–Ni–Al2O3–ZrO2), it was found that nickel dispersion, nickel surface area, and ethanol adsorption capacity were enhanced at an appropriate amount of copper introduction, leading to a promising catalytic activity. Ni–Sr–Al2O3–ZrO2 catalysts prepared by changing drying method were tested as well. Textural properties of Ni–Sr–Al2O3–ZrO2 aerogel catalyst produced from supercritical drying were enhanced when compared to those of xerogel catalyst produced from conventional drying. Nickel dispersion and nickel surface area were higher on Ni–Sr–Al2O3–ZrO2 aerogel catalyst, which led to higher hydrogen yield and catalyst stability over Ni–Sr–Al2O3–ZrO2 aerogel catalyst.  相似文献   

19.
采用共沉淀法制备了一系列ZrxTixAl1-2xO2复合氧化物载体材料,考察了其作为裂解催化剂载体对航空煤油裂解反应的影响.?采用全自动吸附仪、X射线衍射、扫描电镜/能谱仪联用、NH3-程序升温脱附等手段对催化剂进行了表征.?结果表明,当ZrO2:TiO2:Al2O3质量比为1:1:3时催化剂具有最大的比表面积和孔容;具有最强的表面酸性和最集中的强酸中心密度,且具有良好的再生功能.?实验结果表明,载体ZrO2:TiO2:Al2O3质量比为1:1:3时催化剂上650?℃裂解产气量较热裂解提高了2.1倍,700?℃时提高1.4倍.?另外,该系列载体材料经1000?℃焙烧5?h后,所制得的催化剂几乎失去了催化活性.  相似文献   

20.
江莉龙  王玉玲  刘弦  曹彦宁  魏可镁 《催化学报》2013,34(12):2271-2276
通过乙炔在Al2O3上的分解制备碳纳米管-氧化铝(Al2O3-CNTs)载体.采用浸渍法,分别制备了Pt/Ba/Al2O3-CNTs和Pt/Ba/Al2O3催化剂.利用XRD,SEM,TEM,低温N2物理吸附,XPS和in-situ DRIFTS等手段对催化剂的物化性质进行了表征.结果表明,在SO2存在下的NOx还原反应中,Pt/Ba/Al2O3-CNTs比Pt/Ba/Al2O3具有更高的抗SO2性能和再生性能.In-situ DRIFTS表明SO2的存在对NOx储存还原的途径没有影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号