首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Abstract— The effects of aspirin (acetylsalicylic acid: ASA) on vessel behavior and tumor response were measured during and after photodynamic therapy (PDT). Changes to vessel constriction, macromolecular leakage, tumor interstitial pressure, and tumor response were examined. Animals were randomly placed into treatment groups and injected with 0–25 mg/kg Photofrin® and given 0 or 135 J/cm2 light treatment. The light treatment was standardized to 75 mW/cm2 at 630 nm over a 30 min treatment interval (135 J/cm2). The treatment groups were further subdivided to receive Photofrin® alone or Photofrin® plus 100 mg/kg ASA. A cremaster muscle model in Sprague-Dawley rats was used to directly observe microvascular response and changes in vessel permeability to macromolecules. A tumor interstitial pressure model was designed to measure pressure changes in a chondrosarcoma tumor over time. This model indirectly measures macromolecular leakage, among other factors, in the tumor tissue. Groups of 10–20 rats were implanted subcutaneously with chondrosarcoma and were subjected to PDT to assess tumor response to the various treatments. Statistically significant differences in vessel leakage and changes in interstitial pressure were observed between animals given ASA plus PDT as compared to animals given PDT alone. The administration of ASA significantly inhibited venule leakage of albumin and reduced increases in interstitial pressure after treatment. The use of ASA had no effect on vessel constriction or tumor response after PDT. These findings suggest that the increases in vessel permeability observed during and after PDT, using Photofrin®, do not significantly contribute to tumor response.  相似文献   

2.
Abstract— The effects of four different zinc phthalocyanines were studied during and after photodynamic therapy (PDT). Measurements of vessel constriction, vessel leakage, tumor interstitial pressure, eicosanoid release, and tumor response of chondrosarcoma were made in Sprague-Dawley rats. Animals were injected intravenously with 1 μmol/ kg of mono-, di-, or tetrasulfonated zinc phthalocyanine, or 1 μmol/kg of a zinc phthalocyanine substituted with four tertiary butyl groups. Tissues were exposed to 400 J/cm2 670 nm light 24 h after photosensitizer injection. An additional group of animals was given indomethacin before treatment. The use of the monosulfonated and tertiary butyl substituted zinc phthalocyanines in PDT caused the release of specific eicosanoids, caused vessel constriction, and induced venule leakage and increases in tumor interstitial pressure. Tumor cures of 27% and 7% were observed. Photodynamic therapy using the disulfonated zinc phthalocyanine did not induce vessel constriction or the release ofeicosanoids, however; tumor cure was 43%. The use of thc tetrasulfonated zinc phthalocyanine caused intermediate effects between the mono- and disulfonated compounds. The administration of indornethacin to animals completely inhibited the effects of PDT using the monosulfonated compound but had minimal effects on treatment using the disulfonated compound. This suggests that the monosulfonated and disulfonated compounds act by different mechanisms of destruction.  相似文献   

3.
Abstract— Several studies have reported thrombus formation and/or the release of specific vasoactive eicosanoids, suggesting that platelet activation or damage after photodynamic therapy (PDT) may contribute to blood flow stasis. The role of circulating platelets on blood flow stasis and vascular leakage of macromolecules during and after PDT was assessed in an intravital animal model. Sprague-Daw-ley rats bearing chondrosarcoma on the right hind limb were injected intravenously (i.v.) with 25 mg/kg Photofrin 24 h before light treatment of 135 J/cm2 at 630 nm. Thrombocytopenia was induced in animals by administration of 3.75 mg/kg of rabbit anti-rat platelet antibody i.v. 30 min before the initiation of the light treatment. This regimen reduced circulating platelet levels from 300000/mm3 to 20000/mm3. Reductions in the luminal diameter of the microvasculature in normal muscle and tumor were observed in control animals given Photofrin and light. Venule leakage of macromolecules was noted shortly after the start of light treatment and continued throughout the period of observation. Animals made thrombocytopenic showed none of these changes after PDT in either normal tissues or tumor. The lack of vessel response correlated with the absence of thromboxane release in blood during PDT. These data suggest that platelets and eicosanoid release are necessary for vessel constriction and blood flow stasis after PDT using Photofrin.  相似文献   

4.
This study has examined the changes in tumor interstitial pressure exhibited during and after photodynamic therapy (PDT). The kinetics of these changes are marked by an initial decrease, followed by a rapid rise in tumor interstitial pressure. We have also employed two inhibitory agents to evaluate the different components of the pressure curve. Specially designed pressure chambers were seeded with chondrosarcoma and implanted subcutaneously in rats. Animals were injected with 0-50 mg/kg Photofrin II (i.v.) 7 days post-implantation and tumors were exposed to 0-540 J/cm2 630 nm 24 h later. Interstitial pressure was monitored via a transducer connected to the implanted chamber. Additional groups of animals were injected with either indomethacin (an inhibitor of thromboxane synthesis) or Ketanserin (a serotonin antagonist) before light treatment. Porphyrin doses of 10 mg/kg and above (135 J/cm2), or light doses of 135 J/cm2 and above (25 mg/kg Photofrin II) were effective in modifying interstitial pressure. Porphyrin doses greater than 25 mg/kg, or light doses greater than 270 J/cm2 produced no further increases in interstitial pressure. Animals given indomethacin (10 mg/kg i.p.) exhibited the initial decrease in pressure during light treatment, but showed no increase past baseline levels. Animals given Ketanserin (10 mg/kg i.p.) demonstrated no decrease in pressure during PDT, but showed the same elevations in pressure as controls. This suggests that two independent mechanisms account for the different components of the pressure curve, and that serotonin release may occur during PDT.  相似文献   

5.
Photodynamic therapy (PDT) of malignant tumours may involve the interruption of tumor and peritumor microcirculation. We have studied the effect of light activation of the photosensitizing drug dihematoporphyrin ether (DHE) on rat subcutaneous arterioles and the modulation of these effects by cyclooxygenase inhibitors indomethacin and acetyl salicylic acid (ASA). Animals received DHE 48 h prior to light activation and additionally either indomethacin, ASA or saline 3 h prior to treatment. Light activation (630 nm, 60 J/cm2) resulted in a significant reduction to 62 +/- 2% SEM of initial blood flow. This effect was inhibited by ASA (98 +/- 8% SEM) and indomethacin (87 +/- 8% SEM). Results from the administration of various doses of both compounds indicate that this inhibition is dose related. The data presented here show that PDT causes a significant reduction in blood flow in normal arterioles and that this effect was inhibited by ASA and indomethacin indicating that prostaglandins or thromboxane A2 may play an important role in the microvascular response to PDT.  相似文献   

6.
Photodynamic therapy (PDT) is an increasingly popular anticancer treatment that uses photosensitizer, light and tissue oxygen to generate cytotoxic reactive oxygen species (ROS) within illuminated cells. Acting to counteract ROS-mediated damage are various cellular antioxidant pathways. In this study, we combined PDT with specific antioxidant inhibitors to potentiate PDT cytotoxicity in MCF-7 cancer cells. We used disulphonated aluminium phthalocyanine photosensitizer plus various combinations of the antioxidant inhibitors: diethyl-dithiocarbamate (DDC, a Cu/Zn-SOD inhibitor), 2-methoxyestradiol (2-ME, a Mn-SOD inhibitor), l-buthionine sulfoximine (BSO, a glutathione synthesis inhibitor) and 3-amino-1,2,4-triazole (3-AT, a catalase inhibitor). BSO, singly or in combination with other antioxidant inhibitors, significantly potentiated PDT cytotoxicity, corresponding with increased ROS levels and apoptosis. The greatest potentiation of cell death over PDT alone was seen when cells were preincubated for 24 h with 300 μM BSO plus 10 mM 3-AT (1.62-fold potentiation) or 300 μM BSO plus 1 μM 2-ME (1.52-fold), or with a combination of all four inhibitors (300 μM BSO, 10 mM 3-AT, 1 μM 2-ME and 10 μM DDC: 1.4-fold). As many of these inhibitors have already been clinically tested, this work facilitates future in vivo studies.  相似文献   

7.
Abstract The administration of misonidazole (MISO) to Fischer x Copenhagen rats whose R3327-H prostate tumors were treated with photodynamic therapy (PDT) produced enhanced tumor growth delays and cures. This potentiation of PDT by MISO was previously observed with R3327-AT tumors and was postulated to result from drug cytotoxicity of naturally-occurring and PDT-induced hypoxic cells. Radioactively-labelled MISO has been developed as a marker for tissue p02 at the cellular level and [3H]MISO was administered to R3327-AT and R3327-H tumor-bearing rats before and after standard PDT treatments. The amount of 3H in tissues 24 h after drug administration was a measure of'bound MISO'which reflects average tissue oxygenation. [3H]MISO retained in R3327-AT tumors was ˜4x and in liver tissue ˜2x that retained in muscle, heart, brain and R3327-H tumors (1x). Tumors treated with Photofrin II and lased with 1000 J showed a 6-fold increase in retained [3H]MISO in R3327-H tumors and a 2-fold increase in retained [3H]MISO in R3327-AT tumors. The absolute levels of retained 3H in both tumors after PDT were similar. These data provide direct evidence that PDT induces rapid hypoxia in both tumors. When the gastrocnemius muscle of the rat leg was similarly treated, the amount of [3H]MISO retained was ˜4x greater than that in untreated muscle. This result suggests that PDT-induced hypoxia is not selective to just tumor tissue. These data suggest that the hypoxia-inducing property of PDT might be exploited in combination with hypoxic cell cytotoxins to produce improved tumor responses and cures.  相似文献   

8.
The role of the host immune system in contributing to tumor regression following benzophenothiazine photodynamic therapy (PDT) was examined. Photodynamic therapy with 2-iodo-5-ethylamino-9-diethylaminobenzo[a]-phenothiazinium chloride (2I-EtNBS) eradicated EMT-6 mammary fibrosarcomas in 75-100% of treated mice. In contrast, PDT failed to inhibit tumor growth in T-cell-deficient nude mice. Furthermore, T-cell depletion studies with anti-CD8 antibody revealed that the CD8+ T-cell population was critical for an effective PDT response (tumor volume 14 days post-PDT: 262 mm3 vs 59 mm3 in controls; P < 0.01). Because anti-CD4 antibody inhibited tumor growth in the absence of PDT, the role of CD4+ T cells remains unclear. Depletion of natural killer (NK) cells in vivo with anti-asialo-GM1 antibody significantly reduced a suboptimal PDT effect relative to vehicle controls (tumor volume 13 days post-PDT: 513 mm3 vs 85 mm3, respectively; P < 0.001). However, splenic NK cells obtained from PDT-treated tumor-bearing mice were not cytotoxic in vitro against EMT-6 cells, suggesting that NK cells contribute to the PDT effect in vivo by an indirect mechanism. In addition, when mice with complete tumor regression following PDT were rechallenged 28 days later with 5 x 10(5) EMT-6 cells, tumor growth was significantly inhibited as compared to controls (tumor volume 40 days postrechallenge: 137 mm3 vs 833 mm3 in controls; P < 0.03; percent animals without tumor in five experiments: 67% vs 8% in controls). Collectively, these results demonstrate that CD8+ T cells are required to prevent tumor regrowth after 2I-EtNBS-PDT, NK cells contribute to this response and such PDT can elicit protective antitumor immunity.  相似文献   

9.
The objective of this study was to evaluate the effects of combination therapy with photodynamic therapy (PDT) and a novel antiangiogenic regimen using monoclonal antibodies against both vascular endothelial growth factor receptors (VEGFR)-1 (MF1) and VEGFR-2 (DC101) on intracranial glioblastoma xenografts in nude mice. Nude mice bearing intracerebral U87 glioblastoma were treated with PDT and the antiangiogenic regimen (MF1 and DC101) either alone or in combination, while those left untreated served as tumor controls. Tumor volume and animal survival time were analyzed to evaluate the outcome of different treatment modalities. In addition, the immunohistochemical expression of VEGF in the brain adjacent to the tumor, von Willebrand factor (vWF), apoptotic, and proliferative markers in the tumor area were examined. PDT or MF1 + DC101 alone significantly reduced the tumor volume and prolonged the survival time of glioma-implanted animals. Combined therapy markedly reduced tumor volume and increased survival time with significantly better outcomes than both monotherapies. Both vWF and VEGF levels significantly increased after PDT while they both significantly decreased after antiangiogenic treatment, compared with no treatment. PDT plus antiangiogenic treatment led to significant decreases in both vWF and VEGF expression, compared with PDT alone. Either PDT or antiangiogenic treatment alone significantly increased tumor cell apoptosis compared with no treatment, while combination therapy resulted in further augmentation of apoptosis. Antiangiogenic treatment with or without PDT significantly decreased tumor cell proliferation, compared with either no treatment or PDT alone. In summary, we demonstrate both significant inhibition of tumor growth and extended survival of mice treated by the combination therapy with PDT and antiangiogenic agents, compared with each single treatment, suggesting that the combination therapy may be a promising strategy to improve clinical outcomes in glioblastoma.  相似文献   

10.
The photodynamic therapy (PDT) activity of the bis(dimethylthexylsiloxy)silicon 2,3-na-phthalocyanine (SiNc 8 ) was evaluated against the EMT-6 tumor implanted intradermally in BALB/c mice. The SiNc 8 was formulated in aqueous emulsions based on Cremophor EL or Solutol HS 15. The formulation was shown to affect plasma clearance and overall pharmacokinetics. Compared to Cremophor, Solutol promoted rapid plasma clearance and high liver retention of the dye, combined with a slight increase of dye tumor concentrations. The PDT action spectrum for tumor response of SiNc 8 in Cremophor (190 mW cm2, 200 J cm2, 24 h postinjection [p.i.] of 1 (jimol kg1) showed a maximum at 780 nm, which corresponds to the absorption maximum of the monomelic dye as well as the in vivo maximum change in the “diffuse optical density” produced by the dye. The extent of tumor necrosis increased with augmented dye and light doses. Regardless of the formulation, at 1 h p.i. of 0.1 μmol kg?! SiNc 8 , PDT efficiency (190 mW cm'2, 400 J cm2) was high but accompanied by severe damage to normal tissues, at 24 h PDT resulted in complete tumor regression in 80% of the animals without adverse effects to adjacent tissues, while at 72 h p.i. PDT induced no tumor response with Cremophor and only a partial response with Solutol. At the latter time point, plasma dye clearance was nearly complete while tumor tissue levels remained high, suggesting that tumor response correlates with plasma rather than tumor dye levels. Skin sensitivity of SKhl mice to solar-simulated radiation was lower with SiNc 8 as compared to Photofrin®. Our data suggest the potential of SiNc 8 as a far-red absorbing photosensitizer in clinical PDT.  相似文献   

11.
The effects of systemic administration of the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine (L-NNA) in combination with photodynamic therapy (PDT) on tumor response, tumor oxygenation and tumor and normal skin perfusion were studied in C3H mice bearing subcutaneous radiation-induced fibrosarcoma tumors. Photodynamic therapy was carried out using the photosensitizer Photofrin (5 mg/kg) in conjunction with a low fluence rate (30 mW/cm2) and a high fluence rate (150 mW/cm2) protocol at a total fluence of 100 J/cm2. Low fluence rate PDT produced approximately 15% tumor cures, a response not significantly altered by administration of 20 mg/kg L-NNA either 5 min before or after PDT. In contrast, high fluence rate PDT produced no tumor cures by itself, but addition of L-NNA either pre- or post-PDT resulted in approximately 30% and approximately 10% tumor cures, respectively. The L-NNA by itself tended to decrease tumor pO2 levels and perfusion, but statistically significant differences were reached only at one time point (1 h) with one of the oxygenation parameters measured (% values < 2 mm Hg). Photodynamic therapy by itself decreased tumor oxygenation and perfusion more significantly. Addition of L-NNA before PDT further potentiated this effect. The L-NNA exerted its most striking effects on the PDT response of the normal skin microvasculature. Low fluence rate PDT caused severe and lasting shut-down of skin microvascular perfusion. With high fluence rate PDT, skin perfusion was initially decreased but recovered to persistent normal levels within 1 h of treatment. Administration of L-NNA reversed this response, converting it to complete and lasting vascular shut-down identical to that achieved with low fluence rate PDT. This effect was somewhat L-NNA dose dependent but was still marked at a dose of 1 mg/kg. It occurred whether L-NNA was given before or after PDT. The L-NNA did not alter the long-term vascular response of skin to low fluence rate PDT. The ability of L-NNA to correspondingly improve tumor response and severely limit skin vascular perfusion following high fluence rate PDT, while providing no benefit for the low fluence rate protocol, suggests that vascular changes in the tumor surrounding normal tissue contribute to the enhanced tumor curability with adjuvant L-NNA treatment.  相似文献   

12.
Photochemical internalization (PCI) is under development for clinical use in treatment of soft tissue sarcomas and other solid tumors. PCI may release endocytosed bleomycin (BLM) into the cytosol by photochemical rupture of the endocytic vesicles. In this study, the human fibrosarcoma xenograft HT1080 was transplanted into the leg muscle of athymic mice. The photosensitizer disulfonated aluminum phthalocyanine (AlPcS2a) and BLM were systemically administrated 48 h and 30 min, respectively, prior to light exposure at 670 nm (30 J cm−2). The purposes of this study were to evaluate the treatment response to AlPcS2a-photodynamic therapy (PDT) and AlPcS2a-PDT in combination with BLM ( i.e. PCI of BLM) in an orthotopic, invasive and clinically relevant tumor model and to explore the underlying response mechanisms caused by PDT and PCI of BLM. The treatment response was evaluated by measuring tumor growth, contrast-enhanced magnetic resonance imaging (CE-MRI), histology and fluorescence microscopy. The results show that PCI of BLM is superior to PDT in inducing tumor growth retardation and acts synergistically as compared to the individual treatment modalities. The CE-MRI analyses 2 h after AlPcS2a-PDT and PCI of BLM identified a treatment-induced nonperfused central zone of the tumor and a well-perfused peripheral zone. While there were no differences in the vascular response between PDT and PCI, the histological analyses showed that PDT caused necrosis in the tumor center and viable tumor cells were found in the tumor periphery. PCI caused larger necrotic areas and the regrowth in the peripheral zone was almost completely inhibited after PCI. The results indicate that PDT is less efficient in the tumor periphery than in the tumor center and that the treatment effect of PCI is superior to PDT in the tumor periphery.  相似文献   

13.
Photodynamic therapy (PDT) was performed in the chick embryo chorioallantoic membrane (CAM) for the purpose of quantitative evaluation of several porphycenes as potential photosensitizers. Porphycenes are structural isomers of porphine possessing lower symmetry of the macrocycle and are characterized by 10-fold higher absorption at the therapeutic wavelengths for PDT (λ > 630 nm). PDT-induced damage to CAM blood vessels included vasoconstriction and blanching, as was monitored during irradiation and videotaped. Image analysis techniques enabled us to follow PDT-induced constriction of vessel diameter (to 50%), reduction of blood perfusion (to 40% lower optical density) and shrinkage of implanted tumours (to 10% of their original area). The observed PDT efficacy of functionalized porphycenes is positively correlated with the number of polar substituents.  相似文献   

14.
Angiogenesis induced by photodynamic therapy in normal rat brains   总被引:4,自引:0,他引:4  
Angiogenesis promotes tumor growth and invasiveness in brain. Because brain injury often induces expression of angiogenic-promoting molecules, we hypothesize that oxidative insult induced by photodynamic therapy (PDT) could lead to an endogenous angiogenic response, possibly diminishing the efficacy of PDT treatment of tumors. Therefore, we sought to establish whether PDT induced an angiogenic response within the nontumored brain. PDT using Photofrin as a sensitizer at an optical dose of 140 J/cm2 was performed on normal rat brain (n = 30). Animals were sacrificed at 24 h, and 1, 2, 3 and 6 weeks after PDT treatment. Fluorescein isothiocyanatedextran perfusion was performed, and brains were fixed for immunohistological study. Immunostaining revealed that vascular endothelial growth factor (VEGF) expression increased within the PDT-treated hemisphere 1 week after treatment and remained elevated for 6 weeks. Three-dimensional morphologic analysis of vasculature within PDT-treated and contralateral brain demonstrated PDT-induced angiogenesis, as indicated by a significant increase in vessel connectivity (P < 0.001) concomitant with decreased (P < 0.05) mean segment length compared with vessels within the contralateral hemisphere. Volumetric measurement of angiogenic regions indicate that neovascular expansion continued for 4 weeks after PDT. These data demonstrate that PDT induces VEGF expression and neovascularization within normal brain. Because angiogenesis promotes growth and invasiveness of tumor, antagonizing this endogenous angiogenic response to PDT may present a practical means to enhance the efficacy of PDT.  相似文献   

15.
In this study we show that overexpression of Bcl-2 in PC60R1R2 cells reveals a caspase-dependent mechanism of cytochrome c release following photodynamic therapy (PDT) with hypericin. Bcl-2 overexpression remarkably delayed cytochrome c release, procaspase-3 activation and poly(adenosine diphosphate-ribose)polymerase cleavage during PDT-induced apoptosis while it did not protect against PDT-induced necrosis. PDT-treated cells showed a reduction in the mitochondrial membrane potential which occurred with similar kinetics in PC60R1R2 and PC60R1R2/Bcl-2 cells, and was affected neither by the permeability transition pore inhibitor cyclosporin A nor by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk). Hypericin-induced mitochondrial depolarization coincided with cytochrome c release in PC60R1R2 cells while it precedes massive cytochrome c efflux in PC60R1R2/Bcl-2 cells. Preincubation of PC60R1R2 cells with zVAD-fmk or cyclosporin A did not prevent the mitochondrial efflux of cytochrome c, and caspase inhibition only partially protected the cells from PDT-induced apoptosis. In contrast, in PC60R1R2/Bcl-2 cells cytochrome c release and apoptosis were suppressed by addition of zVAD-fmk or cyclosporin A. These observations suggest that the progression of the PDT-induced apoptotic process in Bcl-2-overexpressing cells involves a caspase-dependent feed-forward amplification loop for the release of cytochrome c.  相似文献   

16.
BACKGROUND: Barrett's oesophagus is the major risk factor for oesophageal adenocarcinoma. It is proposed that long-term re-epithelialisation, which has been achieved following ablation using 5-aminolaevulinic acid (5-ALA) photodynamic therapy (PDT) may reduce the risk of malignant change. However, it is not known whether PDT modifies oesophageal motility. AIM: To assess oesophageal pH and motility before and after PDT ablation in treated and untreated areas of the oesophagus. METHODS: Twelve patients (10 male) with Barrett's oesophagus, median segment length 4 cm, were treated with PDT ablation. Twenty-four hours pH assessment and oesophageal manometry were performed before and 4-6 weeks after ablation. PDT was carried out using 635 nm red light, 4-6h after administration of 30 mg/kg 5-ALA. Proximal (untreated) and distal (treated) oesophageal resting pressure, wave amplitude, percentage peristalsis and percentage study time oesophageal pH<4, were assessed. Proton pump inhibitors (PPI) were administered throughout the study. RESULTS: There were no significant differences in oesophageal motility in treated or untreated areas of the oesophagus after PDT compared to pre-treatment values. Patients who continued to experience oesophageal acid exposure required more treatments to achieve complete Barrett's ablation. CONCLUSIONS: Oesophageal motility following ALA-PDT suggests a trend toward enhanced wave propagation however continued oesophageal acid exposure may affect PDT efficacy.  相似文献   

17.
An important goal of photodynamic therapy (PDT) for treatment of various cancers is to shorten PDT-performing time and simultaneously enhance PDT efficacy. Here, we investigated the nontumor tissue distribution of and the tumor vascular damage caused by a new photosensitizer, DH-I-180-3, in mice with implanted EMT6 mammary tumor cells. In addition, we performed cell-based assays to evaluate the basic antitumor effect of DH-I-180-3/PDT in EMT6 cells. After administration of PDT, the type of cell death was characterized to be apoptosis, and a change in the mitochondrial membrane potential was also observed within minutes. On the other hand, tumor growth was remarkably retarded in vivo in mice that received DH-I-180-3/PDT, compared with mice in the control group, which were exposed to light irradiation alone. Finally, tumors in some mice nearly healed. The antitumor drug reached a maximum concentration approximately 3 h after administration. However, PDT was most effective when there was substantial accumulation of DH-I-180-3 in the tumor vasculature and in healthy tissue. The histological demonstration provided further evidence of tumor vascular damage. On the basis of these findings, we suggest that PDT with the photosensitizer DH-I-180-3 induces vascular damage with blood vessel shutdown, in addition to direct killing of tumor cells, in mice.  相似文献   

18.
Abstract The use of sodium pentobarbital anesthesia 50 jig gm−1 during localized photodynamic therapy (PDT) was examined in C57BL/6 mice transplanted with the pigmented B-16 melanoma. A 10 mg kg−1 i.p. injection of Photofrin II was administered 24 h prior to light exposure (630 nm, 150 mW, cm−2, 300-500 J cm−2). Separate groups of mice were utilized to monitor tumour temperature and PDT tumor response. Core tumor temperatures decreased by approx. 10oC following sodium pentobarbital administration. Tumor responses were determined by documenting the percentage of treated animals without tumor recurrences for a period of 50 days following PDT. Superior PDT induced tumor responses were obtained in control (non-anesthetized) mice following light doses of 400 and 500 J cm−2. The results of this study indicate that sodium pentobarbital can induce a protective effect on B-16 melanomas treated with PDT.  相似文献   

19.
The present study was carried out to examine the mechanisms of the synergistic interaction of PAF and A23187 mediated platelet aggregation. We found that platelet aggregation mediated by subthreshold concentrations of PAF (5 nM) and A23187 (1 mM) was inhibited by PAF receptor blocker (WEB 2086, IC50 = 0.65 mM) and calcium channel blockers, diltiazem (IC50 = 13 mM) and verapamil (IC50 = 18 mM). Pretreatment of platelets with PAF and A23187 induced rise in intracellular calcium and this effect was also blocked by verapamil. While examining the role of the down stream signaling pathways, we found that platelet aggregation induced by the co-addition of PAF and A23187 was also inhibited by low concentrations of phospholipase C (PLC) inhibitor (U73122; IC50 = 10 mM), a cyclooxygenase inhibitor (indomethacin; IC50 = 0.2 mM) and inhibitor of TLCK, herbimycin A with IC50 value of 5 mM. The effect was also inhibited by a specific TXA2 receptor antagonist, SQ 29548 with very low IC50 value of 0.05 mM. However, the inhibitors of MAP kinase, PD98059 and protein kinase C, chelerythrine had no effect on PAF and A23187-induced platelet aggregation. These data suggest that the synergism between PAF and A23187 in platelet aggregation involves activation of thromboxane and tyrosine kinase pathways.  相似文献   

20.
The effect of photodynamic therapy (PDT) on neurons is of critical importance when treating cancers within or adjacent to the nervous system. Neurons show reduced sensitivity to meta‐tetrahydroxyphenyl chlorin (mTHPC) mediated PDT, so the aim of this study was to investigate whether neuron sparing is due to endogenous cellular antioxidant activity. Dorsal root ganglion (DRG) neurons and their associated satellite glia were subjected to mTHPC‐PDT in a 3D co‐culture system following incubation with antioxidant inhibitors: diethyl dithiocarbamate (DDC, SOD‐1 inhibitor), 2‐methoxyestradiol (2‐MeOH2, SOD‐2 inhibitor) and l ‐buthionine sulfoximine (l ‐BSO, glutathione synthase inhibitor). Sensitivity of each cell type was assessed using a combination of live/dead staining and immunofluorescence. Pretreatment with DDC and with l ‐BSO significantly increased the sensitivity of neurons to mTHPC‐PDT and also affected satellite glial cell viability, whereas 2‐MeOE2 caused only a small increase in neuron sensitivity (not significant). Pretreatment using a combination of DDC and l ‐BSO caused a near total loss of neuron and glial cell viability in treatment and control conditions. These findings suggest that the SOD‐1 and glutathione pathways are likely to be involved in the neuronal sparing associated with mTHPC‐PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号