首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 571 毫秒
1.
Newton's method and Kurchatov's method are iterative processes known for their fast speed of convergence. We construct from both methods an iterative method to approximate solutions of nonlinear equations given by a nondifferentiable operator, and we study its semilocal convergence in Banach spaces. Finally, we consider several applications of this new iterative process.  相似文献   

2.
In this paper, we propose a structure-preserving doubling algorithm (SDA) for the computation of the minimal nonnegative solution to the nonsymmetric algebraic Riccati equation (NARE), based on the techniques developed for the symmetric cases. This method allows the simultaneous approximation to the minimal nonnegative solutions of the NARE and its dual equation, requiring only the solutions to two linear systems and several matrix multiplications per iteration. Similar to Newton's method and the fixed-point iteration methods for solving NAREs, we also establish global convergence for SDA under suitable conditions, using only elementary matrix theory. We show that sequences of matrices generated by SDA are monotonically increasing and quadratically convergent to the minimal nonnegative solutions of the NARE and its dual equation. Numerical experiments show that the SDA algorithm is feasible and effective, and outperforms Newton's iteration and the fixed-point iteration methods. This research was supported in part by RFDP (20030001103) & NSFC (10571007) of China and the National Center for Theoretical Sciences in Taiwan. This author's research was supported by NSFC grant 1057 1007 and RFDP grant 200300001103 of China.  相似文献   

3.
In this paper, we study the quadratic matrix equations. To improve the application of iterative schemes, we use a transform of the quadratic matrix equation into an equivalent fixed‐point equation. Then, we consider an iterative process of Chebyshev‐type to solve this equation. We prove that this iterative scheme is more efficient than Newton's method. Moreover, we obtain a local convergence result for this iterative scheme. We finish showing, by an application to noisy Wiener‐Hopf problems, that the iterative process considered is computationally more efficient than Newton's method.  相似文献   

4.
本文研究了在控制理论和随机滤波等领域中遇到的一类含高次逆幂的矩阵方程的等价矩阵方程对称解的数值计算问题.采用牛顿算法求等价矩阵方程的对称解,并采用修正共轭梯度法求由牛顿算法每一步迭代计算导出的线性矩阵方程的对称解或者对称最小二乘解,建立了求这类矩阵方程对称解的双迭代算法,数值算例验证了双迭代算法是有效的.  相似文献   

5.
Iterative solutions to the extended Sylvester-conjugate matrix equations   总被引:1,自引:0,他引:1  
This paper is concerned with iterative solutions to a class of complex matrix equations. By applying the hierarchical identification principle, an iterative algorithm is constructed to solve this class of complex matrix equations. The range of the convergence factor is given to guarantee that the proposed algorithm is convergent for arbitrary initial matrix by applying a real representation of a complex matrix as a tool. By using some properties of the real representation, a sufficient convergence condition that is easier to compute is also given by original coefficient matrices. Two numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

6.
A new Newton-like iterative formula for the solution of non-linear equations is proposed. To derive the formula, the convergence criteria of the one-parameter iteration formula, and also the quasilinearization in the derivation of Newton's formula are reviewed. The result is a new formula which eliminates the limitations of other methods. There is now no need to first ensure a good initial approximation to the root, complex roots are found without necessarily starting from a complex formulation of the iteration formula, and the convergence is faster. The rate of convergence is discussed, and examples given.  相似文献   

7.
It is shown that the matrix sequence generated by Euler's method starting from the identity matrix converges to the principal pth root of a square matrix, if all the eigenvalues of the matrix are in a region including the one for Newton's method given by Guo in 2010. The convergence is cubic if the matrix is invertible. A modification version of Euler's method using the Schur decomposition is developed. Numerical experiments show that the modified algorithm has the overall good numerical behavior.  相似文献   

8.
This paper is concerned with weighted least squares solutions to general coupled Sylvester matrix equations. Gradient based iterative algorithms are proposed to solve this problem. This type of iterative algorithm includes a wide class of iterative algorithms, and two special cases of them are studied in detail in this paper. Necessary and sufficient conditions guaranteeing the convergence of the proposed algorithms are presented. Sufficient conditions that are easy to compute are also given. The optimal step sizes such that the convergence rates of the algorithms, which are properly defined in this paper, are maximized and established. Several special cases of the weighted least squares problem, such as a least squares solution to the coupled Sylvester matrix equations problem, solutions to the general coupled Sylvester matrix equations problem, and a weighted least squares solution to the linear matrix equation problem are simultaneously solved. Several numerical examples are given to illustrate the effectiveness of the proposed algorithms.  相似文献   

9.
The Newton-PCG (preconditioned conjugate gradient) like algorithms are usually very efficient. However, their efficiency is mainly supported by the numerical experiments. Recently, a new kind of Newton-PCG-like algorithms is derived in (J. Optim. Theory Appl. 105 (2000) 97; Superiority analysis on truncated Newton method with preconditioned conjugate gradient technique for optimization, in preparation) by the efficiency analysis. It is proved from the theoretical point of view that their efficiency is superior to that of Newton's method for the special cases where Newton's method converges with precise Q-order 2 and α(⩾2), respectively. In the process of extending such kind of algorithms to the more general case where Newton's method has no fixed convergence order, the first is to get the solutions to the one-dimensional optimization problems with many different parameter values of α. If these problems were solved by numerical method one by one, the computation cost would reduce the efficiency of the Newton-PCG algorithm, and therefore is unacceptable. In this paper, we overcome the difficulty by deriving an analytic expression of the solution to the one-dimensional optimization problem with respect to the parameter α.  相似文献   

10.
张凯院  王娇 《数学杂志》2015,35(2):469-476
本文研究了一类Riccati矩阵方程广义自反解的数值计算问题.利用牛顿算法将Riccati矩阵方程的广义自反解问题转化为线性矩阵方程的广义自反解或者广义自反最小二乘解问题,再利用修正共轭梯度法计算后一问题,获得了求Riccati矩阵方程的广义自反解的双迭代算法.拓宽了求解非线性矩阵方程的迭代算法.数值算例表明双迭代算法是有效的.  相似文献   

11.
研究含参数$l$非方矩阵对广义特征值极小扰动问题所导出的一类复乘积流形约束矩阵最小二乘问题.与已有工作不同,本文直接针对复问题模型,结合复乘积流形的几何性质和欧式空间上的改进Fletcher-Reeves共轭梯度法,设计一类适用于问题模型的黎曼非线性共轭梯度求解算法,并给出全局收敛性分析.数值实验和数值比较表明该算法比参数$l=1$的已有算法收敛速度更快,与参数$l=n$的已有算法能得到相同精度的解.与部分其它流形优化相比与已有的黎曼Dai非线性共轭梯度法具有相当的迭代效率,与黎曼二阶算法相比单步迭代成本较低、总体迭代时间较少,与部分非流形优化算法相比在迭代效率上有明显优势.  相似文献   

12.
《Optimization》2012,61(7):983-1004
In this article, a modification on Newton's direction for solving problems of unconstrained optimization is presented. As it is known, a major disadvantage of Newton's method is its slowness or non-convergence for the initial point not being close to optima's neighbourhood. The proposed method generally guarantees the decrement of the norm of the gradient or the value of the objective function at every iteration, contributing to the efficiency of Newton's method. The quadratic convergence of the proposed iterative scheme and the enlargement of the radius of convergence area are proved. The proposed algorithm has been implemented and tested on several well-known test functions.  相似文献   

13.
In this article, we consider iterative operator‐splitting methods for nonlinear differential equations with bounded and unbounded operators. The main feature of the proposed idea is the embedding of Newton's method for solving the split parts of the nonlinear equation at each step. The convergence properties of such a mixed method are studied and demonstrated. We confirm with numerical applications the effectiveness of the proposed scheme in comparison with the standard operator‐splitting methods by providing improved results and convergence rates. We apply our results to deposition processes. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1026–1054, 2011  相似文献   

14.
Recently, Campo and Lacoa [Campo & Lacoa, Numerical Methods Partial Differential Eq., 11 , 275 (1995)] proposed a simple iterative procedure to solve approximately a forced convection heat-transfer problem inside a tube subjected to nonlinear convective boundary conditions. Their technique relied on solutions of a one-dimensional ordinary differential equation of first order to estimate the behavior of the solution of the two-dimensional parabolic partial differential equation. The recursive steps, proposed by Campo and Lacoa, can be combined in a single fixed-point iteration formula thus facilitating the study of its properties. In this note, we present a short analysis of the convergence of the Campo–Lacoa equation and give alternatives to guarantee and improve the convergence patterns. Our results show that the Picard's iterative method converges for all values of Z in the region of thermal development, e.g., 0 ≤ Z ≤ 1; however, the convergence rate tends to diminish as Z increases. To guarantee convergence for larger values of Z, a damped-Picard's iteration may be adopted. Moreover, to increase the rate of convergence, a Newton's iteration is proposed. A detailed comparison in terms of accuracy and CPU time is provided. © 1997 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 13: 433–443, 1997  相似文献   

15.
In this article we present a natural generalization of Newton's Second Law valid in field theory, i.e., when the parameterized curves are replaced by parameterized submanifolds of higher dimension. For it we introduce what we have called the geodesic k-vector field, analogous to the ordinary geodesic field and which describes the inertial motions (i.e., evolution in the absence of forces). From this generalized Newton's law, the corresponding Hamilton's canonical equations of field theory (Hamilton-De Donder-Weyl equations) are obtained by a simple procedure. It is shown that solutions of generalized Newton's equation also hold the canonical equations. However, unlike the ordinary case, Newton equations determined by different forces can define equal Hamilton's equations.  相似文献   

16.
We describe a novel method for minimisation of univariate functions which exhibits an essentially quadratic convergence and whose convergence interval is only limited by the existence of near maxima. Minimisation is achieved through a fixed-point iterative algorithm, involving only the first and second-order derivatives, that eliminates the effects of near inflexion points on convergence, as usually observed in other minimisation methods based on the quadratic approximation. Comparative numerical studies against the standard quadratic and Brent's methods demonstrate clearly the high robustness, high precision and convergence rate of the new method, even when a finite difference approximation is used in the evaluation of the second-order derivative.  相似文献   

17.
The nonlinear singular problem $f(u)=0$ is considered. Here $f$ is a $C^3$ mapping from $E^n$ to $E^n$. The Jacobian matrix $f'(u)$ is singular at the solution $u^*$ of $f(u)=0$. A new acceleration method in the homotopy Newton's continuation is proposed. The quadratic convergence of the new algorithm is proved. A numerical example is given.  相似文献   

18.
Using Newton's method as an intermediate step, we introduce an iterative method that approximates numerically the solution of f (x) = 0. The method is essentially a leap-frog Newton's method. The order of convergence of the proposed method at a simple root is cubic and the computational efficiency in general is less, but close to that of Newton's method. Like Newton's method, the new method requires only function and first derivative evaluations. The method can easily be implemented on computer algebra systems where high machine precision is available.  相似文献   

19.
A one parameter family of iterative methods for the simultaneous approximation of simple complex zeros of a polynomial, based on a cubically convergent Hansen–Patrick's family, is studied. We show that the convergence of the basic family of the fourth order can be increased to five and six using Newton's and Halley's corrections, respectively. Since these corrections use the already calculated values, the computational efficiency of the accelerated methods is significantly increased. Further acceleration is achieved by applying the Gauss–Seidel approach (single-step mode). One of the most important problems in solving nonlinear equations, the construction of initial conditions which provide both the guaranteed and fast convergence, is considered for the proposed accelerated family. These conditions are computationally verifiable; they depend only on the polynomial coefficients, its degree and initial approximations, which is of practical importance. Some modifications of the considered family, providing the computation of multiple zeros of polynomials and simple zeros of a wide class of analytic functions, are also studied. Numerical examples demonstrate the convergence properties of the presented family of root-finding methods.  相似文献   

20.
In this paper, modifications of a generalized Newton method based on some rules of quadrature are studied. The methods considered are Newton-like iterative schemes for numerical solving systems of nonsmooth equations. Some mild conditions are given that ensure superlinear convergence to a solution. Moreover, a parameterized version of the midpoint version is presented. Finally, results of numerical tests are established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号