首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
C16mimBr/Triton X-100混合体系的表面性质和胶团化行为   总被引:1,自引:0,他引:1  
凌锦龙  曹枫  徐敏虹  洪迪  张艳 《化学学报》2011,69(22):2658-2664
通过测定表面张力,研究了离子液体型表面活性剂溴化1-十六烷基-3-甲基咪唑(C16mimBr)和非离子表面活性剂TritonX-100(TX100)混合体系分别在水溶液和20%乙二醇(体积分数)水溶液中的表面性质和胶团化行为.结果表明,混合体系在水溶液和20%乙二醇水溶液中都存在协同效应,乙二醇的加入降低了协同作用,混...  相似文献   

2.
通过测定表面张力,研究了离子液体型表面活性剂溴化1-十六烷基-3-甲基咪唑(C16mim Br)和非离子表面活性剂Tween20混合体系在水溶液中的聚集行为和热力学性质。利用Rubingh和Maeda模型计算了混合物中各组分在胶团相中的组成、相互作用参数以及胶团形成的热力学性质。结果表明,两组分在胶团形成过程中存在协同效应。非离子组分在胶团相中的组成高于本体溶液中的组成。分析和探讨了胶团形成的驱动力和稳定性。  相似文献   

3.
利用电导法研究了烷基三甲基溴化铵表面活性剂(CnTAB,n=12,14,16),即十二烷基三甲基溴化铵(DTAB),十四烷基三甲基溴化铵(TTAB)和十六烷基三甲基溴化铵(CTAB),在混合极性溶剂乙二醇/水(体积分数0~40%)中的胶团化行为。考察了温度对胶团形成的影响,应用相分离模型估算了三个表面活性剂的胶团热力学参数。结果表明临界胶团浓度(cmc)和反离子解离度(α)都随乙二醇组分的增加而增大。在乙二醇/水混合溶剂中胶团形成的标准吉布斯自由能相差很小,混合焓都是负值,而混合熵都为正值,说明焓-熵补偿效应在胶团形成中起主导作用。  相似文献   

4.
季铵盐二聚表面活性剂C12-s-C12·2Br(s=2、3、4、6)和非离子表面活性剂C12E10或C12E23在水溶液中生成混合胶团.其临界胶团总浓度cmcT值介于二元复配体系中各组分的临界胶团浓度cmc01和cmc02之间.当添加少量非离子型表面活性剂(在水溶液中的摩尔分数α2=0.1)时,混合胶团中C12E10或C12E23的摩尔分数均已超过0.35;随着溶液中非离子型表面活性剂含量的增大,混合胶团中逐渐以C12E10或C12E23成分为主.  相似文献   

5.
C12-s-C12·2Br和C12En混合水溶液的胶团化行为   总被引:1,自引:0,他引:1  
季铵盐二聚表面活性剂C12-s-C12@2Br(s=2、3、4、6)和非离子表面活性剂C12E10或C12E23在水溶液中生成混合胶团.其临界胶团总浓度cmcT值介于二元复配体系中各组分的临界胶团浓度和之间.当添加少量非离子型表面活性剂(在水溶液中的摩尔分数α2=0.1)时,混合胶团中C12E10或C12E23的摩尔分数均已超过0.35;随着溶液中非离子型表面活性剂含量的增大,混合胶团中逐渐以C12E10或C12E23成分为主.  相似文献   

6.
C12-s-C12•2Br和C12En混合水溶液的胶团化行为   总被引:3,自引:0,他引:3  
季铵盐二聚表面活性剂C12 s C12•2Br(s=2、3、4、6)和非离子表面活性剂C12E10或C12E23在水溶液中生成混合胶团.其临界胶团总浓度cmcT值介于二元复配体系中各组分的临界胶团浓度和之间.当添加少量非离子型表面活性剂(在水溶液中的摩尔分数α2=0.1)时,混合胶团中C12E10或C12E23的摩尔分数均已超过0.35;随着溶液中非离子型表面活性剂含量的增大,混合胶团中逐渐以C12E10或C12E23成分为主.  相似文献   

7.
混合表面活性剂水溶液的浊点性质   总被引:3,自引:0,他引:3  
滕弘霓  孙美娟  王利 《化学研究与应用》2004,16(2):239-240,F003
正负离子表面活性剂混合体系在水溶液中很容易形成沉淀,这曾在很大程度上限制了该体系理论性质的研究及其应用。近年来的研究发现,该体系在吸附和胶团形成等方面存在很强的协同效应,对其相关性质的研究越来越多。与单一离子性表面活性剂性质不同,后者的溶解  相似文献   

8.
研究了烷基苯磺酸盐Gemini表面活性剂Ia与非离子表面活性剂C10E6溶液混合胶团中分子间的相互作用. 通过表面张力法测定了Ia 和C10E6不同比例不同温度下的临界胶束浓度(cmc). 结果表明, 两种表面活性剂以任何比例复配的cmc比单一表面活性剂的cmc都低, 表现出良好的协同效应. 传统型非离子表面活性剂C10E6、Gemini表面活性剂Ia及混合物的cmc都随着温度升高而降低. 而且, 任何配比的混合胶团中两种表面活性剂分子间的相互作用参数β都是负值, 这说明两种表面活性剂在混合胶团中产生了相互吸引的作用. 混合表面活性剂体系的胶团聚集数比单一Ia的大, 但比单一C10E6的小. 向Gemini表面活性剂Ia胶束中加入非离子表面活性剂C10E6会使胶束的微观极性变小.  相似文献   

9.
正负离子表面活性剂与两性表面活性剂的相互作用   总被引:3,自引:0,他引:3  
本文研究正负离子表面活性剂与两性表面活性剂混合水溶液的表面性质, 以及两性表面活性剂对正负离子裘面活性剂溶解度的影响。结果表明: (1) 两性表面活性剂的加溶作用,有助于正负离子表面活性剂的溶解; (2) 加入两性表面活性剂的量适当, 混合溶液基本保持原正负离子表面活性剂的表面活性; (3) 正负离子表面活性剂与两性表面活性剂在表面层和胶团中分子间的相互作用比正负离子表面活性剂与非离子表面活性剂分子间的相互作用稍强HC-FC正负; 离子表面活性剂与两性表面活性剂混合体系在表面层中有可能形成双分子或多分子层结构。  相似文献   

10.
采用表面张力法和圆二色谱技术研究了两亲嵌段共聚物聚D-亮氨酸-聚乙二醇单甲醚/非离子表面活性剂n-十二烷基β-D-葡萄糖苷(C12Glu)混合体系在水溶液中的相互作用.结果表明二者之间的疏水缔合作用较弱;聚合物中α-螺旋结构的含量随着体系中表面活性剂浓度的增大而增加.  相似文献   

11.
NMR self-diffusion coefficient measurements have been used to study the properties of polyethylene glycol (23) lauryl ether (Brij-35) with cetyltrimethylammonium bromide (CTAB) in the mixed aqueous solutions with different mole fractions of CTAB. By fitting the self-diffusion coefficients to the two-state exchange model, the critical micelle concentrations of the two solutes in the mixed solutions (cmc*1 and cmc*2) were obtained. The critical mixed micelle concentrations (cmc*) were then evaluated by the sum of cmc*1 and cmc*2, which are in good agreement with the results measured by the surface tension method. The cmc* values are lower than those of the ideal case of mixing, which indicates that the behavior of the CTAB/Brij-35 system is nonideal. Moderate interactions between CTAB and Brij-35 in their mixtures can be deduced from the interaction parameters (betaM) based on the cmc* obtained by the NMR self-diffusion method. The compositions (x1) of the mixed micelles at different total surfactant concentrations were also evaluated. By using these results, a possible mechanism of mixed micellar formation and a picture of the formation of nonsimultaneous CTAB/Brij-35 binary mixed micelle were proposed. In contrast to the case of CTAB/TX-100 system, Brij-35 molecules have a tendency to form micelles first at any mole fraction of CTAB. The mixed micellar self-diffusion coefficients (Dm) increase slightly at lower CTAB molar ratios, and then speed up with increasing CTAB mole fraction.  相似文献   

12.
The interaction in two mixtures of a nonionic surfactant Triton-X-100 (TX-100) and different ionic surfactants was investigated. The two mixtures were TX-100/sodium dodecyl sulfate (SDS) and TX-100/cetyltrimethylammonium bromide (CTAB) at molar fraction of TX-100, αTX-100 = 0.6. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Γmax), and minimum area per molecule at the air/solution interface (A min) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were also determined. Mixtures of both TX-100/SDS and TX-100/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.  相似文献   

13.
Mixed micelle formation and synergistic interactions of binary surfactant combinations of sodium nonylphenol polyoxyethylene ether sulfate (NPES) with typical surfactants such as sodium dodecyl sulfate (SDS), Triton X-100 (TX100), cetyl trimethyl ammonium bromide (CTAB), and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) at 25 degrees C in the presence of NaCl have been investigated. The critical micelle concentration of the binary mixtures has been quantitatively estimated by steady-state fluorescence measurements. The micellar characteristics such as composition, activity coefficients, and mutual interaction parameters have been estimated following different theoretical treatments. Investigation on the micellization and synergistic interaction of NPES with four kinds of surfactants showed that the behavior of the binary mixture deviated from the ideal state. The analysis revealed that the interaction parameter values (beta) varied with variation of solvent composition. Besides the strong electrostatic attraction between the oppositely charged surfactant NPES-CTAB mixture, the interaction between NPES and SDS also showed far more deviation from ideal behavior than that of TX100 and AOT. The reason for the synergism is also discussed and the results show that an ionic and a nonionic surfactant character existed concurrently in NPES due to the combination of a sulfate group and polyoxyethylene as a hydrophilic moiety. Zeta potential and diffusion coefficient measurements of micelles confirmed the synergistic interaction between the binary surfactants.  相似文献   

14.
Surface tension measurements and the kinetic study of the basic hydrolysis of ethyl p-nitrophenyl chloromethyl phosphonate were used to examine the structural behavior and catalytic activity of the cethyltrimethylammonium bromide (CTAB)-polyoxyethylene (10) oleyl ether, C(18)H(35)(OCH(2)CH(2))(10)OH (Brij 97)-water mixed micellar system. Application of the regular solution model to the experimental data yields the value of the interaction parameter beta as -4.6, which indicates an attractive interaction of the surfactants in the mixed micelle and reflects synergistic solution behavior of the mixture. The mixed micellar composition is found to be enriched in the surfactant with the lower critical micelle concentration (cmc). In the kinetic study a nonmonotonic change in the pseudo-first-order rate constant of basic hydrolysis of the substrate is observed with increasing mole fraction of nonionic surfactant. The pseudophase micellar model reveals that the concentration factor mainly contributes to the catalytic effect, while the microenvironmental factor plays a negative role.  相似文献   

15.
Solutions of mixed surfactants are often considered as solvent mixtures. Usually, mixed micellar aggregates are considered as a homogeneous mixture of solvents dispersed in a solution. But the transposition of the usual thermodynamic models of solvent mixtures to mixed micelles is not always so obvious. We discussed this point in this paper by considering several cases of surfactant mixtures. A major problem is to define the molar fraction of each surfactant in the aggregate especially when a charged surfactant is employed in the mixture, because possible dissociation of the components of the mixture must be considered in the bulk as well in the micelle. This definition is crucial especially for the characterization of the ideal behavior which is usually described by the Clint relation, as well as for the application of regular solution theory (RST) which is the most frequently applied model for interpreting the behavior of surfactant mixtures. We show in this paper how the definition of the molar fraction can change the equations and the interpretations.  相似文献   

16.
王慧敏  王仲妮  周武  吴同浩 《应用化学》2012,29(9):1053-1059
通过平衡表面张力的测定,研究了聚氧乙烯山梨醇酐脂肪酸酯(Tween)系列与聚氧乙烯(10)油基醚(Brij97)混合胶束形成的相互作用参数βm、分子交换能εm及热力学参数(ΔGom、ΔHom、ΔSom),并探讨了Tween系列分子结构、混合体系的组成及温度对胶束形成的影响。 研究表明,随着Tween碳链的增大,混合胶束中Tween的摩尔分数Xm1增大,协同效应增强;在Tween60/Brij97混合胶束中,ΔGom随着Tween60摩尔分数(α1)的增大而增大;在混合胶束形成中,α1≤0.33时,两组分表现出协同效应;在α1>0.33时,未表现出协同效应;温度对Tween60/Brij97混合体系的影响表明,温度升高,CMC和ΔGom减小,ΔHom和ΔSom增大,协同效应减弱。  相似文献   

17.
An anionic/cationic mixed surfactant aqueous system of surfactin and cetyl trimethyl ammonium bromide (CTAB) at different molar ratios was studied by surface tension and fluorescence methods (pH 8.0). Various parameters that included critical micelle concentration (cmc), micellar composition (X 1), and interaction parameter (β m) as well as thermodynamic properties of mixed micelles were determined. The β m was found to be negative and the mixed system was found to have much lower cmc than pure surfactant systems. There exits synergism between anionic surfactin and cationic CTAB surfactants. The degree of participation of surfactin in the formation of mixed micelle changes with mixing ratio of the two surfactants. The results of aggregation number, fluorescence anisotropy, and viscosity indicate that more packed and larger aggregates were formed from mixed surfactants than unmixed, and the mixed system may be able to form vesicle spontaneously at high molar fraction of surfactin.  相似文献   

18.
The interaction in two mixtures of an anionic gemini surfactant having N ,N -dialkylamide and carboxylate groups in a molecule, (CH2)2[N(COC11H23)CH(CO2H)CH2(CO2H)]2. 2NaOH (GA), and conventional anionic surfactants have been investigated in 0.1 M NaCl at pH 5.0. The two mixtures are GA/sodium dodecylsulfate (SDS) and GA/sodium N -dodecanoylglutamate (AGS) at a molar fraction of GA, alphaGA = 0.25 . Mixtures of both GA/SDS and GA/AGS exhibit synergism in surface tension reduction effectiveness. The GA/SDS mixture also exhibits synergism in surface tension reduction efficiency and mixed micelle formation, whereas the GA/AGS mixture does not. The interaction in mixed adsorption film formation is stronger than that in mixed micelle formation for the two mixtures. The interaction in the formation of the mixed adsorption film and the mixed micelle for the GA/SDS mixture is stronger in both formations than that for the GA/AGS mixture. The stronger interaction for the GA/SDS mixture may be caused by the combination of the smaller minimum area per molecule at the air/water interface (Amin) of the head groups in the GA molecule and the larger Amin in the SDS molecule.  相似文献   

19.
The behavior of mixed nonionic/nonionic surfactant solutions, that is, p-(1,1,3,3-tetramethylbutyl)phenoxy poly(ethylene glycol)s Triton X-100 (TX100) and Triton X-165 (TX165) have been studied by surface tension and density measurements. The obtained results of the surface tension measurements were compared with those calculated from the relations derived by Joos, Miller, and co-workers. From the comparison, it appeared that by using these two approaches the adsorption behavior of TX100 and TX165 mixtures at different mole fractions can be predicted. The negative deviation from the linear relationship between the surface tension and composition of TX100 and TX165 mixtures in the concentration range corresponding to that of the saturated monolayer at the interface, the values of the parameters of molecular interaction, the activity coefficients, as well as the excess Gibbs energy of mixed monolayer formation calculated on the basis of Rosen and Motomura approaches proved that there is synergism in the reduction of the surface tension of aqueous solutions of TX100 and TX165 mixture when saturation of the monolayer is achieved. The negative parameters of intermolecular interaction in the mixed micelle and calculations based on MT theory of Blankschtein indicate that there is also synergism in the micelle formation for TX100 and TX165 mixture. It was also found that the values of the standard Gibbs energy of adsorption and micellization for the mixture of these two surfactants, which confirm the synergetic effect, can be predicted on the basis of the proposed equations, which include the values of the mole fraction of surfactant and excess Gibbs energy TX100 and TX165 in the monolayer and micelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号