首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The radical reactions of N‐(2‐halogenoalkanoyl)‐substituted anilines (anilides) of type 1 have been investigated under various conditions. Treatment of compounds 1a – 1o with Bu3SnH in the presence of (2,2′‐azobis(isobutyronitrile) (AIBN) afforded a mixture of the indolones (oxindoles) 2a – 2o and the reduction products 5a – 5o (Table 1). In contrast, the N‐unsubstituted anilides 1p – 1s, 1u , and 1v gave the corresponding reduction products exclusively (Table 1). Similar results were obtained by treatment of 1 with Ni powder (Table 2) or wth Et3B (Table 3). Anilides with longer N‐(phenylalkyl) chains such as 6 and 7 were inert towards radical cyclization, with the exception of N‐benzyl‐2‐bromo‐N,2‐dimethylpropanamide ( 6b ), which, upon treatment with Ni powder in i‐PrOH, afforded the cyclized product 9b in low yield (Table 4). Upon irradiation, the extended anilides 6, 7, 10 , and 11 yielded the corresponding dehydrobromination products exclusively (Table 5).  相似文献   

2.
The photochemical reactions of various ‘N‐methacryloyl acylanilides’ (=N‐(acylphenyl)‐2‐methylprop‐2‐enamides) have been investigated. Under irradiation, the acyl‐substituted anilides 1a – 1c and 1o afforded exclusively the corresponding quinoline‐based cyclization products of type 2 (Table 1). In contrast, irradiation of the benzoyl (Bz)‐substituted anilides 1e – 1h afforded a mixture of the open‐chain amides 4e – 4h and the cyclization products 2e – 2h . Irradiation of the para‐acyl‐substituted anilides 6a – 6e and 6h afforded the corresponding quinoline‐based cyclization products of type 5 as the sole products (Table 2). The formation of the cyclization products 2a – 2c and 2o can be rationalized in terms of 6π‐electron cyclization, followed by thermal [1,5] acyl migration, and that of compounds 3p, 5a – 5e , and 5h can be explained by a 6π‐electron cyclization only. The formation of the open‐chain amides 4e – 4h probably follows a mechanism involving a 1,7‐diradical, C and a spirolactam of type D (Scheme). Long‐range ζ‐H abstraction by the excited carbonyl O‐atom of the benzoyl group on the aniline ring is expected to proceed via a nine‐membered cyclic transition state, as proposed on the basis of X‐ray crystallographic analyses (Fig. 2).  相似文献   

3.
The 2‐thienyl‐substituted 4,5‐dihydrofuran derivatives 3 – 8 were obtained by the radical cyclization reaction of 1,3‐dicarbonyl compounds 1a – 1f with 2‐thienyl‐substituted conjugated alkenes 2a – 2e by using [Mn(OAc)3] (Tables 15). In this study, reactions of 1,3‐dicarbonyl compounds 1a – 1e with alkenes 2a – 2c gave 4,5‐dihydrofuran derivatives 3 – 5 in high yields (Tables 13). Also the cyclic alkenes 2d and 2e gave the dihydrobenzofuran compounds, i.e., 6 and 7 in good yields (Table 4). Interestingly, the reaction of benzoylacetone (=1‐phenylbutane‐1,3‐dione; 1f ) with some alkenes gave two products due to generation of two stable carbocation intermediates (Table 5).  相似文献   

4.
The photochemical reactions of different N‐(2‐acylphenyl)‐2‐bromo‐2‐methylpropanamides have been investigated. Irradiation of the N‐unsubstituted anilides 1a – 1c gave the corresponding dehydrobromination, cyclization, and bromo‐migration products 2, 3 , and 4 , respectively (Table 1). Irradiation of the N‐alkyl anilides 1e – 1g afforded the corresponding deacylation and cyclization products 5 and 6 , respectively, whereas irradiation of the N‐alkyl anilides 1i – 1k , carrying 2‐benzoyl groups on the aromatic rings, afforded the unexpected tricyclic lactams 7 (besides 2, 5 , and 6 ). The formation of the cyclization products 6 could be rationalized in terms of an electrocyclic ring closure of the 6π‐electron‐conjugated enamides 2 produced by dehydrobromination of 1 , followed by thermal 1,5‐acyl migration (Path B in the Scheme). The formation of the bridged lactams 7 probably follows a mechanism involving the 1,7‐diradical 8 generated by ζ‐H‐abstraction (1,8‐H transfer) by an excited acyl O‐atom (Path A).  相似文献   

5.
TEMPO‐Mediated oxidation of hydroxylamines (=hydroxyamines) and alkoxyamines to the corresponding oxime derivatives is reported (TEMPO=2,2,6,6‐tetramethylpiperidin‐1‐yloxy radical; Scheme 2). These environmentally benign oxidations proceed in good to excellent yields (Table 1). For alkoxyamines, oxidation to the corresponding oxime ethers can be performed by using dioxygen as a terminal oxidant in the presence of 5–10 mol‐% of TEMPO or 4‐substituted derivatives thereof as a catalyst (Scheme 3 and Table 2). Importantly, benzyl bromides can directly be transformed to oxime ethers via in situ alkoxyamine formation by a nucleophilic substitution followed by TEMPO‐mediated oxidation (Scheme 4 and Table 3).  相似文献   

6.
The photochemical reactions of 2‐acylphenyl methacrylates (= 2‐acylphenyl 2‐methylprop‐2‐enoates) 1 were investigated. Irradiation of 2‐acylphenyl methacrylates 1a – d in MeCN gave the tricyclic lactones 2a – d in good yields, together with a small amount of O CO bond cleavage product, the 2‐acylphenols 3a – d (Scheme 2, Table). The formation of the tricyclic lactones 2 probably follows a mechanism involving a 1,7‐diradical through ζ‐H abstraction (1,8‐H transfer) by the excited carbonyl O‐atom (Scheme 3). Irradiation of 2‐acylphenyl tiglate (= 2‐acylphenyl (2E)‐2‐methylbut‐2‐enoate) 1e and 2‐acylphenyl methacrylates 1g – i , substituted by a MeO group (δ‐H) at the 3,5‐positions of the phenyl group, also gave the tricyclic lactones 2e and 2g – i , but in low yields. On the other hand, no H‐abstraction products were observed on irridation of 2‐(ethoxycarbonyl)phenyl methacrylate 1f , of 2‐acylphenyl methacrylate 1j which is substituted by a Me group (γ‐H) at the 3,5‐positions of the phenyl group, and of 1k with an OH group at the 3‐position of the phenyl group.  相似文献   

7.
Heptalenecarbaldehydes 1 / 1′ as well as aromatic aldehydes react with 3‐(dicyanomethylidene)‐indan‐1‐one in boiling EtOH and in the presence of secondary amines to yield 3‐(dialkylamino)‐1,2‐dihydro‐9‐oxo‐9H‐indeno[2,1‐c]pyridine‐4‐carbonitriles (Schemes 2 and 4, and Fig. 1). The 1,2‐dihydro forms can be dehydrogenated easily with KMnO4 in acetone at 0° (Scheme 3) or chloranil (=2,3,5,6‐tetrachlorocyclohexa‐2,5‐diene‐1,4‐dione) in a ‘one‐pot’ reaction in dioxane at ambient temperature (Table 1). The structures of the indeno[2,1‐c]pyridine‐4‐carbonitriles 5′ and 6a have been verified by X‐ray crystal‐structure analyses (Fig. 2 and 4). The inherent merocyanine system of the dihydro forms results in a broad absorption band in the range of 515–530 nm in their UV/VIS spectra (Table 2 and Fig. 3). The dehydrogenated compounds 5, 5′ , and 7a – 7f exhibit their longest‐wavelength absorption maximum at ca. 380 nm (Table 2). In contrast to 5 and 5′, 7a – 7f in solution exhibit a blue‐green fluorescence with emission bands at around 460 and 480 nm (Table 4 and Fig. 5).  相似文献   

8.
Vilsmeier–Haack‐type cyclization of 1H‐indole‐4‐propanoic acid derivatives was examined as model construction for the A–B–C ring system of lysergic acid ( 1 ). Smooth cyclization from the 4 position of 1H‐indole to the 3 position was achieved by Vilsmeier–Haack reaction in the presence of K2CO3 in MeCN, and the best substrate was found to be the N,N‐dimethylcarboxamide 9 (Table 1). The modified method can be successfully applied to an α‐amino acid derivative protected with an N‐acetyl function, i.e., to 27 (Table 2); however, loss of optical purity was observed in the cyclization when a chiral substrate (S)‐ 27 was used (Scheme 5). On the other hand, the intramolecular Pummerer reaction of the corresponding sulfoxide 20 afforded an S‐containing tricyclic system 22 , which was formed by a cyclization to the 5 position (Scheme 3).  相似文献   

9.
The reaction of 1H‐imidazole‐4‐carbohydrazides 1 , which are conveniently accessible by treatment of the corresponding esters with NH2NH2?H2O, with isothiocyanates in refluxing EtOH led to thiosemicarbazides (=hydrazinecarbothioamides) 4 in high yields (Scheme 2). Whereas 4 in boiling aqueous NaOH yielded 2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thiones 5 , the reaction in concentrated H2SO4 at room temperature gave 1,3,4‐thiadiazol‐2‐amines 6 . Similarly, the reaction of 1 with butyl isocyanate led to semicarbazides 7 , which, under basic conditions, undergo cyclization to give 2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones 8 (Scheme 3). Treatment of 1 with Ac2O yielded the diacylhydrazine derivatives 9 exclusively, and the alternative isomerization of 1 to imidazol‐2‐ones was not observed (Scheme 4). It is important to note that, in all these transformations, the imidazole N‐oxide residue is retained. Furthermore, it was shown that imidazole N‐oxides bearing a 1,2,4‐triazole‐3‐thione or 1,3,4‐thiadiazol‐2‐amine moiety undergo the S‐transfer reaction to give bis‐heterocyclic 1H‐imidazole‐2‐thiones 11 by treatment with 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione (Scheme 5).  相似文献   

10.
A Ph3P‐catalyzed cyclization of α‐halogeno ketones 2 with dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates) 3 produced halogenated α,β‐unsaturated γ‐butyrolactone derivatives 4 in good yields (Scheme 1, Table). The presence of electron‐withdrawing groups such as halogen atoms at the α‐position of the ketones was necessary in this reaction. Cyclization of α‐chloro ketones resulted in higher yields than that of the corresponding α‐bromo ketones. Dihalogeno ketones similarly afforded the expected γ‐butyrolactone derivatives in high yields.  相似文献   

11.
Microwave‐assisted stereoselective 1,3‐dipolar cycloaddition of C,N‐diarylnitrones (i.e., N‐(arylmethylidene)benzenamine N‐oxides) 2 to substituted bis(arylmethylidene)acetones (=1,5‐diarylpenta‐1,4‐dien‐3‐ones) 1 leading to diastereoisomer pairs of bis‐isoxazolidines 3 and 4 in good to excellent yield is described (Scheme 2 and Table 2). The configuration outcome of the reaction is discussed based on the NMR and X‐ray data of the products.  相似文献   

12.
The chloro alcohols 4 – 6 derived from TADDOLs (=α,α,α′,α′‐tetraaryl‐1,3‐dioxolan‐4,5‐dimethanols) are used to prepare corresponding sulfanyl alcohols, ethers, and amines (Scheme 1 and Table 1). The dithiol analog of TADDOL and derivatives thereof, 45 – 49 , were also synthesized. The crystal structures of 16 representatives of this series of compounds are reported (Figs. 13 and Scheme 2). The thiols were employed in Cu‐catalyzed enantioselective conjugate additions of Grignard reagents to cyclic enones, with cycloheptenone giving the best results (er up to 94 : 6). The enantioselectivity reverses from Si‐addition with the sulfanyl alcohol to Re‐addition with the alkoxy or dimethylamino thiols (Table 4). CuI‐Thiolates, 50 – 53 , could be isolated in up to 84% yield (Scheme 2) and were shown to have tetranuclear structures in the gas phase (by ESI‐MS), in solution (CH2Cl2, THF; by vapor‐pressure osmometry and by NMR pulsed‐gradient diffusion measurements; Table 5), and in the solid state (X‐ray crystal structures in Scheme 2). The Cu complex 50 of the sulfanyl alcohol is stable in air and in the presence of weak aqueous acid, and it is a highly active catalyst (0.5 mol‐%) for the 1,4‐additions, leading to the same enantio‐ and regioselectivities observed with the in situ generated catalyst (6.5 mol‐%; Scheme 3). Since the reaction mixtures contain additional metal salts (MgX2, LiX) it is not possible at this stage, to propose a mechanistic model for the conjugate additions.  相似文献   

13.
The syntheses of some novel carboacyclic nucleosides, 17a – 17o , containing oxiconazole‐like scaffolds, are described (Schemes 13). In this series of carboacyclic nucleosides, pyrimidine as well as purine and other imidazole derivatives were employed as an imidazole successor in oxiconazole. These compounds could be prepared in good yields by using two different strategies (Schemes 1 and 2). Due to Scheme 1, the N‐coupling of nucleobases with 2‐bromoacetophenones was attained for 18a – 18e , and their subsequent oximation affording 19a – 19e and finally O‐alkylation with diverse alkylating sources resulted in the products 17a – 17g, 17n , and 17o . In Scheme 2, use of 2‐bromoacetophenone oximes 20 , followed by N‐coupling of nucleobases, provided 19f – 19j whose final O‐alkylation produced 17h – 17m (Scheme 2). For the rational interpretation of the dominant formation of (E)‐oxime ethers rather than (Z)‐oxime isomers, PM3 semiempirical quantum‐mechanic calculations were discussed and the calculations indicated a lower heat of formation for (E)‐isomers.  相似文献   

14.
N‐Protected L ‐phenylalanines 1a,b were transformed, via the corresponding Weinreb amides 2 and ethynyl ketones 3 , into chiral enamino ketones 4 (Scheme 1). Similarly, L ‐threonine 6 was transformed in four steps into the enamino ketone 10 . Cyclocondensations of 4 and 10 with pyrazolamines 11 , benzenecarboximidamide ( 12 ), and hydrazine derivatives 18 afforded N‐protected 1‐heteroaryl‐2‐phenylethanamines 15a – e, 16, 17 , and 21a – k and 1‐heteroaryl‐1‐aminopropan‐2‐ols 23a,b in good yields (Schemes 2 and 3). Finally, deprotection by catalytic hydrogenation furnished free amines 22a – g and 24a,b (Scheme 3).  相似文献   

15.
The reaction of N‐phenylbenzimidoyl isoselenocyanates 8 with primary and secondary amines in acetone at room temperature, followed by treatment with a base, led to 6H‐[5,1,3]benzoselenadiazocine derivatives of type 10 (Scheme 3). An analogous cyclization was observed when 8a and 8b were reacted with the Na salt of diethyl malonate in EtOH at room temperature, which yielded the eight‐membered selenaheterocycles 11 (Scheme 5). The molecular structures of some of the products, as well as that of a sulfur analogue, have been established by X‐ray crystallography (Figs. 14). The isoselenocyanates 8 have been prepared from N‐(2‐methylphenyl)benzamides 5 in a three‐step procedure via the corresponding imidoyl chlorides 6 , side‐chain chlorination to give 7 , and treatment with KSeCN (Scheme 2).  相似文献   

16.
Condensation of 3,4‐dimethoxybenzeneethanamine ( 3d ) and various benzeneacetic acids, i.e., 4a – e , via a practical and efficient one‐pot Bischler–Napieralski reaction, followed by NaBH4 reduction, produced a series of 1‐benzyl‐1,2,3,4‐tetrahydroisoquinolines, i.e., 5a – e , in satisfactory yields (Scheme 3). Oxidative coupling of the N‐acyl and N‐methyl derivatives 6a – e of the latter with hypervalent iodine ([IPh(CF3COO)2]) yielded products with two different skeletons (Scheme 4). The major products from N‐acyl derivatives 6a – c were (±)‐N‐acylneospirodienones 2a – c , while the minor was the 3,4‐dihydroisoquinoline 7 . (±)‐Glaucine ( 1 ), however, was the major product starting from N‐methyl derivative 6e . Possible reaction mechanisms for the formation of these two types of skeleton are proposed (Scheme 5).  相似文献   

17.
A convenient approach to 2,2′‐(1,4‐phenylene)bis[1‐acetyl‐1,2‐dihydro‐4H‐3,1‐benzoxazin‐4‐one] derivatives 4 was explored employing the one‐pot condensation of anthranilic acids (=2‐aminobenzoic acids) 1 with terephthalaldehyde (=benzene‐1,4‐dicarboxaldehyde; 2 ) under ultrasound‐irradiation conditions (Scheme 1). The reactions proceeded smoothly in the presence of excess Ac2O in the absence of any other catalyst and solvent to afford the respective products in high yields.  相似文献   

18.
Reactions of readily available and stable benzotriazolemethanamines 1a – l , obtained from aldehydes and secondary amines (Scheme 2), gave the expected alk‐2‐yn‐1‐amines 3a – t (Scheme 3). The amphiphilic character of the synthesized products was responsible for physicochemical measurements. Specific aggregation properties of the obtained compounds make them useful as electroactive materials in the Langmuir–Blodgett technique.  相似文献   

19.
The syntheses of N7‐glycosylated 9‐deazaguanine 1a as well as of its 9‐bromo and 9‐iodo derivatives 1b , c are described. The regioselective 9‐halogenation with N‐bromosuccinimide (NBS) and N‐iodosuccinimide (NIS) was accomplished at the protected nucleobase 4a (2‐{[(dimethylamino)methylidene]amino}‐3,5‐dihydro‐3‐[(pivaloyloxy)methyl]‐4H‐pyrrolo[3,2‐d]pyrimidin‐4‐one). Nucleobase‐anion glycosylation of 4a – c with 2‐deoxy‐3,5‐di‐O‐(p‐toluoyl)‐α‐D ‐erythro‐pentofuranosyl chloride ( 5 ) furnished the fully protected intermediates 6a – c (Scheme 2). They were deprotected with 0.01M NaOMe yielding the sugar‐deprotected derivatives 8a – c (Scheme 3). At higher concentrations (0.1M NaOMe), also the pivaloyloxymethyl group was removed to give 7a – c , while conc. aq. NH3 solution furnished the nucleosides 1a – c . In D2O, the sugar conformation was always biased towards S (67–61%).  相似文献   

20.
Deprotection of the tetramer 24 , obtained by coupling the iodinated dimer 18 with the alkyne 23 gave the 8′,5‐ethynediyl‐linked adenosine‐derived tetramer 27 (Scheme 3). As direct iodination of C(5′)‐ethynylated adenosine derivatives failed, we prepared 18 via the 8‐amino derivative 17 that was available by coupling the imine 15 with the iodide 7 ; 15 , in its turn, was obtained from the 8‐chloro derivative 12 via the 4‐methoxybenzylamine 14 (Scheme 2). This method for the introduction of the 8‐iodo substituent was worked out with the N‐benzoyladenosine 1 that was transformed into the azide 2 by lithiation and treatment with tosyl azide (Scheme 1). Reduction of 2 led to the amine 3 that was transformed into 7 . 1,3‐Dipolar cycloaddition of 3 and (trimethylsilyl)acetylene gave 6 . The 8‐substituted derivatives 4a – d were prepared similarly to 2 , but could not be transformed into 7 . The known chloride 8 was transformed into the iodide 11 via the amines 9 and 10 . The amines 3 , 10 , and 16 form more or less completely persistent intramolecular C(8)N−H⋅⋅⋅O(5′) H‐bonds, while the dimeric amine 17 forms a ca. 50% persistent H‐bond. There is no UV evidence for a base‐base interaction in the protected and deprotected dimers and tetramers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号