首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
This paper deals with a non-local parabolic equation of Lotka-Volterra type that describes the evolution of phenotypically structured populations. Nonlinearities appear in these systems to model interactions and competition phenomena leading to selection. In this paper, the equation on the structured population is coupled with a differential equation on the nutrient concentration that changes as the total population varies.Different methods aimed at showing the convergence of the solutions to a moving Dirac mass are reviewed. Using either weak or strong regularity assumptions, the authors study the concentration of the solution. To this end, BV estimates in time on appropriate quantities are stated, and a constrained Hamilton-Jacobi equation to identify where the solutions concentrates as Dirac masses is derived.  相似文献   

2.
Nonlocal Lotka–Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses co-exist?

We will explain how these questions relate to the so-called “constrained Hamilton–Jacobi equation” and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional.

Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation.

Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution.  相似文献   

3.
4.
The main purpose of this paper is the existence of solutions and controllability for semilinear boundary problems with nonlocal initial conditions. We show that the solutions are given by a variation of constants formula which allows us to study the exact controllability for this kind of problems with control and nonlinear terms at the boundary. The included application to a size structured population equation provides a motivation for abstract results.  相似文献   

5.
本文研究Dirac方程-iΣαkku+aβu+M(x)u=g(x,|u|)u的解,其中M(x)是位势函数,g(x,|u|)u在无穷远处关于u是超线性的.本文用变分法来研究这一问题.借助于与此方程的"极限方程"相关的某个辅助系统,构造了变分泛函ΦM的环绕水平,使得建立在ΦM环绕结构上的极小极大值CM满足0〈CM〈C,这里C是"极限方程"的最小能量.从而可以证明(C)c条件对所有c〈C成立,因此得到了方程的最小能量解.  相似文献   

6.
In this article, we prove a Sobolev-like inequality for the Dirac operator on closed compact Riemannian spin manifolds with a nearly optimal Sobolev constant. As an application, we give a criterion for the existence of solutions to a nonlinear equation with critical Sobolev exponent involving the Dirac operator. We finally specify a case where this equation can be solved.  相似文献   

7.
Abstract In [3] Dias and Figueira have reported that the square of the solution for the nonlinear Dirac equation satisfies the linear wave equation in one space dimension. So the aim of this paper is to proceed with their work and to clarify a structure of the nonlinear Dirac equation. The explicit solutions to the nonlinear Dirac equation and Dirac-Klein-Gordon equation are obtained. Keywords: Nonlinear Dirac equation, Dirac-Klein-Gordon equation, Pauli matrix Mathematics Subject Classification (2000): 35C05, 35L45  相似文献   

8.
We introduce the notion of difference equations defined on a structured set. The symmetry group of the structure determines the set of difference operators. All main notions in the theory of difference equations are introduced as invariants of the action of the symmetry group. Linear equations are modules over the skew group algebra, solutions are morphisms relating a given equation to other equations, symmetries of an equation are module endomorphisms, and conserved structures are invariants in the tensor algebra of the given equation.We show that the equations and their solutions can be described through representations of the isotropy group of the symmetry group of the underlying set. We relate our notion of difference equation and solutions to systems of classical difference equations and their solutions and show that out notions include these as a special case.  相似文献   

9.
We consider an integro-differential nonlinear model that describes the evolution of a population structured by a quantitative trait. The interactions between individuals occur by way of competition for resources whose concentrations depend on the current state of the population. Following the formalism of Diekmann et al. (2005) [16], we study a concentration phenomenon arising in the limit of strong selection and small mutations. We prove that the population density converges to a sum of Dirac masses characterized by the solution φ of a Hamilton-Jacobi equation which depends on resource concentrations that we fully characterize in terms of the function φ.  相似文献   

10.
In this paper, we consider a compact Riemannian manifold whose boundary is endowed with a Riemannian flow. Under a suitable curvature assumption depending on the O’Neill tensor of the flow, we prove that any solution of the basic Dirac equation is the restriction of a parallel spinor field defined on the whole manifold. As a consequence, we show that the flow is a local product. In particular, in the case where solutions of the basic Dirac equation are given by basic Killing spinors, we characterize the geometry of the manifold and the flow.  相似文献   

11.
本文主要讨论扰动色谱方程delta激波解的行成和转换,并讨论上述方程的黎曼问题.当扰动参数趋于零时,通过研究黎曼解的极限,我们可以观察到如下两个重要现象:激波和接触间断重合行成delta激波,一类激波(一个变量含有delta函数).  相似文献   

12.
13.
We study a parabolic Lotka–Volterra type equation that describes the evolution of a population structured by a phenotypic trait, under the effects of mutations and competition for resources modelled by a nonlocal feedback. The limit of small mutations is characterized by a Hamilton–Jacobi equation with constraint that describes the concentration of the population on some traits. This result was already established in Barles and Perthame (2008); Barles et al. (2009); Lorz et al. (2011) in a time-homogeneous environment, when the asymptotic persistence of the population was ensured by assumptions on either the growth rate or the initial data. Here, we relax these assumptions to extend the study to situations where the population may go extinct at the limit. For that purpose, we provide conditions on the initial data for the asymptotic fate of the population. Finally, we show how this study for a time-homogeneous environment allows to consider temporally piecewise constant environments.  相似文献   

14.
In this paper we study the solutions to the diffusion equation on some conformally flat cylinders and on the n‐torus. Using the Clifford algebra calculus with an appropriate Witt basis, the solutions can be expressed as multiperiodic eigensolutions to the parabolic Dirac operator. We study their fundamental properties, give representation formulas of all these solutions and develop some integral representation formulas. In particular we set up a Green type formula for the solutions to the homogeneous diffusion equation on cylinders and tori. Then we also treat the inhomogeneous diffusion equation diffusion with prescribed boundary conditions in Lipschitz domains on these manifolds. As main application, we construct well localized diffusion wavelets on this class of cylinders and tori by means of multiperiodic eigensolutions to the parabolic Dirac operator. We round off with presenting some concrete numerical simulations for the three dimensional case. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we study the solutions to the generalized Helmholtz equation with complex parameter on some conformally flat cylinders and on the n‐torus. Using the Clifford algebra calculus, the solutions can be expressed as multi‐periodic eigensolutions to the Dirac operator associated with a complex parameter λ∈?. Physically, these can be interpreted as the solutions to the time‐harmonic Maxwell equations on these manifolds. We study their fundamental properties and give an explicit representation theorem of all these solutions and develop some integral representation formulas. In particular, we set up Green‐type formulas for the cylindrical and toroidal Helmholtz operator. As a concrete application, we explicitly solve the Dirichlet problem for the cylindrical Helmholtz operator on the half cylinder. Finally, we introduce hypercomplex integral operators on these manifolds, which allow us to represent the solutions to the inhomogeneous Helmholtz equation with given boundary data on cylinders and on the n‐torus. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this two-part paper is to investigate the stability properties of a special class of solutions to a coagulation-fragmentation equation. We assume that the coagulation kernel is close to the diagonal kernel, and that the fragmentation kernel is diagonal. In a companion paper we constructed a two-parameter family of stationary solutions concentrated in Dirac masses, and we carefully studied the asymptotic decay of the tails of these solutions, showing that this behaviour is stable. In this paper we prove that for initial data which are sufficiently concentrated, the corresponding solutions approach one of these stationary solutions for large times.  相似文献   

17.
Wave dynamics in topological materials has been widely studied recently. A striking feature is the existence of robust and chiral wave propagations that have potential applications in many fields. A common way to realize such wave patterns is to utilize Dirac points, which carry topological indices and is supported by the symmetries of the media. In this work, we investigate these phenomena in photonic media. Starting with Maxwell's equations with a honeycomb material weight as well as the nonlinear Kerr effect, we first prove the existence of Dirac points in the dispersion surfaces of transverse electric and magnetic Maxwell operators under very general assumptions of the material weight. Our assumptions on the material weight are almost the minimal requirements to ensure the existence of Dirac points in a general hexagonal photonic crystal. We then derive the associated wave packet dynamics in the scenario where the honeycomb structure is weakly modulated. It turns out the reduced envelope equation is generally a two-dimensional nonlinear Dirac equation with a spatially varying mass. By studying the reduced envelope equation with a domain-wall-like mass term, we realize the subtle wave motions, which are chiral and immune to local defects. The underlying mechanism is the existence of topologically protected linear line modes, also referred to as edge states. However, we show that these robust linear modes do not survive with nonlinearity. We demonstrate the existence of nonlinear line modes, which can propagate in the nonlinear media based on high-accuracy numerical computations. Moreover, we also report a new type of nonlinear modes, which are localized in both directions.  相似文献   

18.
The Auxiliary equation method is used to find analytic solutions for the Kawahara and modified Kawahara equations. It is well known that different types of exact solutions of the given auxiliary equation produce new types of exact travelling wave solutions to nonlinear equations. In this paper, new exact solutions of the auxiliary equation are presented. Using these solutions, many new exact travelling wave solutions for the Kawahara type equations are obtained.  相似文献   

19.
In this paper we show the asymptotic stability of the solutions of some differential equations with delay and subject to impulses. After proving the existence of mild solutions on the half-line, we give a Gronwall–Bellman-type theorem. These results are prodromes of the theorem on the asymptotic stability of the mild solutions to a semilinear differential equation with functional delay and impulses in Banach spaces and of its application to a parametric differential equation driving a population dynamics model.  相似文献   

20.
Stieltjes differential equations, which contain equations with impulses and equations on time scales as particular cases, simply consist on replacing usual derivatives by derivatives with respect to a nondecreasing function. In this paper we prove new existence results for functional and discontinuous Stieltjes differential equations and we show that such general results have real world applications. Specifically, we show that Stieltjes differential equations are specially suitable to study populations which exhibit dormant states and/or very short (impulsive) periods of reproduction. In particular, we construct two mathematical models for the evolution of a silkworm population. Our first model can be explicitly solved, as it consists on a linear Stieltjes equation. Our second model, more realistic, is nonlinear, discontinuous and functional, and we deduce the existence of solutions by means of a result proven in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号