首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
本文通过高分辨X射线衍射(HRXRD)、激光拉曼光谱(Raman)、晶格畸变检测等测试分析方法对多组高温高压(HTHP) Ⅰb、HTHP Ⅱa和化学气相沉积(CVD)型(100)面金刚石单晶样品进行对比研究。HRXRD和Raman的检测结果均表明HTHP Ⅱa型金刚石单晶的结晶质量接近天然金刚石,其XRD摇摆曲线半峰全宽和Raman半峰全宽分别为0.015°~0.018° 和1.45~1.85 cm-1。晶格畸变检测仪的检测结果表明,HTHP Ⅱa型金刚石单晶的应力分布主要有两种:一种几乎无明显应力分布,另一种沿<110>方向呈对称的放射状分布,其他区域无晶格畸变。HTHP Ⅰb和CVD型金刚石单晶应力分布均相对分散,晶格畸变复杂,与其HRXRD和Raman的检测结果相符。进一步利用等离子体刻蚀法对三种类型金刚石单晶(100)面位错缺陷进行对比分析,结果表明,HTHP Ⅱa型金刚石位错密度为三者中最低,仅为1×103 cm-2。本研究为制备高质量大尺寸CVD金刚石单晶的衬底选择提供了实验依据。  相似文献   

2.
利用热丝化学气相沉积法(HFCVD)在碳化硅基底上制备金刚石薄膜,采用场发射扫描电子显微镜、拉曼光谱仪、原子力显微镜研究了在不同甲烷浓度条件下制备的金刚石薄膜表面形貌及物相组成,在干摩擦条件下通过往复式摩擦磨损实验测试并计算了已制备金刚石薄膜的摩擦系数和磨损率,结合物相分析及摩擦磨损实验结果分析了甲烷浓度的改变对金刚石薄膜摩擦磨损性能的影响。结果表明,由于甲烷气体含量的升高,金刚石薄膜结晶质量下降,薄膜由微米晶向纳米晶转变。摩擦磨损实验结果显示:3%甲烷浓度条件下制备的金刚石薄膜耐磨性较好,磨损率为2.2×10-7 mm3/mN;5%甲烷浓度条件下制备的金刚石薄膜摩擦系数最低(0.032),磨损率为5.7×10-7 mm3/mN,制备的金刚石薄膜的耐磨损性能相比于碳化硅基底(磨损率为9.89×10-5 mm3/mN)提升了两个数量级,显著提高了碳化硅基底的耐磨性。  相似文献   

3.
突破高质量、高效金刚石掺杂技术是实现高性能金刚石功率电子器件的前提。本文利用微波等离子体化学气相沉积(MPCVD)法,以三甲基硼为掺杂源,制备出表面粗糙度0.35 nm,XRD(004)摇摆曲线半峰全宽28.4 arcsec,拉曼光谱半峰全宽3.05 cm-1的高质量硼掺杂单晶金刚石。通过改变气体组分中硼元素的含量,实现了1016~1020 cm-3的p型金刚石可控掺杂工艺。随后,研究了硼碳比、生长温度、甲烷浓度等工艺条件对p型金刚石电学特性的影响,结果表明:在硼碳比20×10-6、生长温度1 100 ℃、甲烷浓度8%、腔压160 mbar(1 mbar=100 Pa)时p型金刚石迁移率达到207 cm2/(V·s)。通过加氧生长可以提升硼掺杂金刚石结晶质量,降低杂质散射。当氧气浓度为0.8%时,样品空穴迁移率提升至 614 cm2/(V·s)。  相似文献   

4.
本文研究制备了可应用于高功率CO2激光器的CVD金刚石窗口。首先使用环形天线-椭球谐振腔式MPCVD装置沉积制备直径2英寸(1英寸=2.54 cm)金刚石自支撑膜,然后将膜片双面抛光,激光切割成矩形基片,再采用蒸镀法在基片表面制备中心波长在10.6 μm的增透膜,最终制备得到金刚石光学窗口。采用傅里叶红外透射谱、热导仪、爆破试验台测试了金刚石基片镀膜前后的红外透过率、热导率和爆破强度。利用自行搭建的光学平台,测试了CVD金刚石基片增透膜能承受的激光功率密度。结果显示CVD金刚石基片在10.6 μm处的透过率为70.9%,利用光谱计算的吸收系数为0.06 cm-1,热导率>19.5 W/(cm·K),爆破强度>5.62 MPa,镀膜后的透过率为99.2%,增透膜可承受的激光功率密度>995 W/mm2。  相似文献   

5.
掺杂是调控金刚石性能的一种重要手段。本文采用温度梯度法,在5.6 GPa、1 312 ℃的条件下,选用Fe3P作为磷源进行磷掺杂金刚石大单晶的合成。金刚石样品的显微光学照片表明,随着Fe3P添加比例的增加,金刚石晶体的颜色逐渐变深,包裹体数量逐渐增加,晶形由板状转变为塔状直至骸晶。金刚石晶形的变化表明Fe3P的添加使生长金刚石的V形区向右偏移,这是Fe3P改变触媒特性的缘故。红外光谱分析表明,Fe3P的添加使金刚石晶体中氮含量上升,这说明磷的进入诱使氮原子更容易进入金刚石晶格中。激光拉曼光谱测试表明,随着Fe3P添加比例的增加,所合成的掺磷金刚石的拉曼峰位变化不大,其半峰全宽(FWHM)值变大,这说明磷的进入使得金刚石晶格畸变增加。XPS测试结果显示,随着Fe3P添加比例的增加,金刚石晶体中磷相对碳的原子百分含量也会增加,这意味着添加Fe3P所合成的金刚石晶体中有磷存在。  相似文献   

6.
本文研究了在反应气体中引入不同浓度的CO2对微波等离子体化学气相沉积(MPCVD)法同质外延生长单晶金刚石内应力的影响,并对其作用机理进行了分析。研究发现,随着CO2浓度增加,单晶金刚石内应力逐渐减小,这是由于添加的CO2提供了含氧基团,可以有效刻蚀金刚石生长过程中的非金刚石碳,并能够降低金刚石中杂质的含量,从而避免晶格畸变,减少生长缺陷,并最终表现为单晶金刚石内应力的减小,其中金刚石内应力以压应力的形式呈现。此外反应气体中加入CO2可以降低单晶金刚石的生长速率和沉积温度,且在合适的碳氢氧原子比(5∶112∶4)下能够得到杂质少、结晶度高的单晶金刚石。  相似文献   

7.
作为天然金刚石生长环境的碳酸盐,研究其掺杂对人造金刚石晶体生长行为的影响具有重要的学术价值。本文运用高温高压下的温度梯度法,将碳酸钙(CaCO3)按照不同比例掺杂到金刚石合成腔体内的碳源中,用以研究其掺杂对金刚石分别沿(100)或(111)晶面生长行为的影响。利用光学显微成像对掺杂合成金刚石晶体形貌的表征表明:随着碳酸钙掺量的增加,沿(100)面生长的金刚石晶形由塔状变为板状且出现了裂晶、连晶现象,晶体颜色先变浅再变黑,内部出现了包裹体;同样,沿(111)面生长的金刚石晶形由板状逐渐变为塔状且出现了裂晶、孪晶现象,晶体颜色逐渐变黑,内部包裹体增多。用激光拉曼光谱对掺杂金刚石晶体质量的表征表明:随着碳酸钙掺量的增加,沿(100)或(111)面生长的掺杂金刚石的拉曼峰位偏移量均增大,半峰全宽均变大。这说明碳酸钙掺杂使得金刚石晶格畸变增加、内应力变大。本文对碳酸钙掺杂影响沿两不同面生长金刚石的晶形、颜色、内部质量等行为的成因进行了分析,为本课题后续研究奠定了基础。  相似文献   

8.
作为半导体材料的金刚石具有宽的禁带宽度和高的热导率、介质击穿场强等优异性质,因此其应用前景广阔.P型金刚石发展较N型金刚石成熟.因为缺乏可实用的N型金刚石材料,这使得金刚石半导体器件的应用难以实现.因此N型半导体金刚石成为研究者关注的焦点.论文从掺杂元素和制备方法两方面详细介绍了国内外N型金刚石的研究现状.硼与磷或硫元素共掺杂获得N型金刚石的研究取得了较大进展;利用化学气相沉积法和离子注入法制备N型半导体金刚石研究较多且取得了一定进展.高压高温下的温度梯度法便于掺杂调控金刚石性能,因而利用该法合成N型半导体金刚石大单晶值得尝试.  相似文献   

9.
采用光弹性理论对人造金刚石中的应力进行了分析与讨论,发现不同应力状态的金刚石在偏光显微镜下会出现不同的干涉色,并依据干涉色的级序高低对应力进行了分析和测定.结果表明,不同颜色的双折射条纹对应不同的应力值:黄色对应的最大剪应力为0.6659GPa,红色对应的最大剪应力为0.6562GPa,蓝色对应的最大剪应力为0.5704GPa,绿色对应的最大剪应力为0.6448GPa.根据金刚石在偏光显微镜下干涉色的颜色来考察金刚石内部应力水平,从而为金刚石的质量检验提出了一种具有使用价值的简易评价手段.  相似文献   

10.
微波等离子体化学气相沉积(MPCVD)技术被认为是制备大尺寸高品质单晶金刚石的理想手段之一.然而其较低的生长速率(~10μm/h)以及较高的缺陷密度(103~107 cm-2)是阻碍MPCVD单晶金刚石应用的主要因素,经过国内外研究团队数十年的不懈努力,在高速率生长和高品质生长两个方面都取得了众多成果.但是除此之外还需解决高速率与高品质生长相统一的问题,才能实现MPCVD单晶金刚石的高端应用价值.  相似文献   

11.
本文综述了近年来国内外研究者在纳米金刚石薄膜的掺杂、导电性能、场发射性能和电化学性能等方面的工作,涉及化学气相沉积法制备n型纳米金刚石薄膜,离子注入掺杂纳米金刚石晶粒提高薄膜的n型导电性能,金属离子注入制备场发射性能良好的纳米金刚石薄膜,低剂量离子注入和晶粒表面氧终止态获得高迁移率n型电导,纳米金刚石/石墨烯复合结构的调控对其电学及电化学性能的影响,以及硼掺杂金刚石薄膜电极的微结构和电化学性能研究等。综合分析发现,晶粒掺杂和表界面协同调控可以提升薄膜的电学性能、场发射性能及电化学性能,为纳米金刚石薄膜在纳米电子器件、电化学电极等领域的应用提供了理论基础。  相似文献   

12.
采用溶胶-凝胶法成功制备出系列Eu3+掺杂和Li+、Eu3+共掺杂Gd2ZnTiO6红色荧光粉,并研究Li+、Eu3+掺杂对样品的晶体结构、微观形貌及发光性能的影响。结果显示,所制备的Gd2ZnTiO6∶Eu3+,Li+(GZT∶Eu3+,Li+) 荧光粉为双钙钛矿结构,属于单斜晶系(空间群:P21/n),大小为10 μm的无规则形状的颗粒。在395 nm近紫外光的激发下,GZT∶Eu3+的发射光谱展示出典型的Eu3+线状特征光谱,发射峰中心位于615 nm处,归属于Eu3+5D07F2跃迁。Eu3+的最佳掺杂浓度为0.07(摩尔分数),样品显示明显的浓度猝灭效应,其机制为电偶极子-电偶极子(d-d)相互作用。此外,研究还发现,Li+掺杂对样品的晶体结构、微观形貌没有影响,但是一定量的Li+掺杂可以显著增强样品的荧光强度。当Li+浓度为0.05时,荧光粉发射主峰强度增强程度最大,提高至原来的4.3倍,说明通过Li+、Eu3+共掺杂可以获得高亮度的GZT红色荧光粉。GZT∶0.14Eu3+,0.05Li+荧光粉的CIE色坐标为(0.631 1,0.375 3)与标准红光色坐标(0.670,0.330)较为接近,是一种潜在的LED用红色荧光粉。  相似文献   

13.
采用高温固相法合成了一系列Eu2+激活的Sr3LnM(PO4)3F(Ln=Gd, La, Y; M= Na, K)荧光粉,并通过X射线衍射、扫描电子显微镜、荧光光谱等对样品的物相结构、形貌和发光特性进行了表征及分析。结果表明:成功合成了Sr3LnM(PO4)3F:Eu2+荧光粉,样品的粒径为2~10 μm。荧光粉在蓝光区具有强烈的发射,归属为发光中心Eu2+的4f65d→4f7跃迁。当基质中的碱金属M由Na变成K时,Eu2+的发光颜色由淡蓝色变成深蓝色,色纯度大幅提高,有效地调控了Eu2+在氟磷灰石Sr3LnM(PO4)3F中的发光,进而发现了一种通过改变第二层配位原子来调控Eu2+发光的策略。  相似文献   

14.
穆文祥  贾志泰  陶绪堂 《人工晶体学报》2022,51(9-10):1749-1754
本文使用导模法(EFG)制备了4英寸氧化镓(β-Ga2O3)单晶,并对晶体物相、结晶质量、缺陷、光学及电学特性进行了研究。晶体不同方向劳厄(Laue)衍射斑点清晰一致,符合β-Ga2O3衍射特征。晶体(400)面摇摆曲线半峰全宽(FWHM)为57.57″,通过化学腐蚀获得其腐蚀坑位错密度为1.06×104 cm-2。晶体在紫外截止边为262.1 nm,对应光学带隙为4.67 eV。通过C-V测试分析获得非故意掺杂晶体中的电子浓度为7.77×1016 cm-3。  相似文献   

15.
人工合成金刚石表面三角锥缺陷的存在机理研究   总被引:1,自引:0,他引:1  
天然金刚石主要生长面为{111},在其表面经常会存在大量凹陷的金字塔状或者底面平整的三角锥蚀坑缺陷,这种缺陷很少出现在人工合成金刚石单晶的表面.本研究在高温高压5.4 GPa、1550 K的条件下,以FeNi合金作为触媒,FeS为添加剂,利用温度梯度法(TGM)直接合成金刚石单晶的{111}表面同样发现有大量凹陷的金字塔状或者底面平整的三角锥蚀坑缺陷.而在体系中加入微量单质B时,高温高压直接合成金刚石单晶的{111}表面不仅存在大量金字塔状的三角锥蚀坑,还出现了天然金刚石表面不曾发现的大量规则的三角凸起平台和凸起的金字塔状或者顶面平整的三角锥缺陷.由此推断,尽管天然金刚石{111}表面经常出现的三角锥缺陷可能是在自然环境中后期腐蚀出现的,而在FeNi-C-FeS体系高温高压直接合成的金刚石单晶{111}表面出现的三角锥缺陷却是在晶体生长过程中直接形成的,FeS在这种表面缺陷的形成过程中起着不可或缺的作用.  相似文献   

16.
硼是金刚石中最常见的受主元素之一,其在价带之上0.37 eV处形成了浅能级,因此硼掺杂金刚石被认为是一种理想的p型半导体材料.在化学气相沉积法制备的硼掺杂金刚石中,硼杂质在晶体中的分布非常不均匀,其拉曼信号强度对测试位置的依赖性非常强,且可重复性很差.而对于高温高压法合成的硼掺杂金刚石来说,同一晶面上硼杂质分布变化较小.本文利用低温光致发光光谱研究了高温高压法合成的硼掺杂金刚石辐照缺陷的光致发光性质,并利用晶体生长理论讨论了辐照缺陷在不同晶面上的分布情况.  相似文献   

17.
采用微波等离子体化学气相沉积(MPCVD)技术制备的大尺寸、高质量单晶金刚石材料具备卓越的物理化学性能,在珠宝、电子、核与射线探测等消费品、工业和国防科技领域极具应用前景.研究发现在化学气相沉积单晶金刚石生长过程中,在衬底与外延层之间,以及生长中途停止-继续生长的生长层之间出现明显的界面区.本文采用偏光显微镜、拉曼光谱、荧光光谱(PL)等手段对界面区域进行了测试分析,界面区在偏光显微镜下表现出因应力导致的亮区,且荧光光谱(PL)及其线扫描显示该区域的NV色心含量远高于衬底及其前后外延层,表明该界面区具有较高的缺陷和杂质含量.结果表明在生长高品质单晶金刚石初期就应当采取一定手段进行品质调控,并尽量在一个生长周期内完成制备.  相似文献   

18.
通过溶胶-凝胶法制备出一系列Dy3+掺杂的Y2MgTiO6(YMT∶Dy3+)荧光粉,并利用X射线衍射仪、扫描电子显微镜、荧光光谱仪对荧光粉的晶体结构、微观形貌及发光性质进行研究和分析。研究结果显示,YMT∶Dy3+荧光粉为双钙钛矿结构,Dy3+掺杂不改变样品的晶体结构。在近紫外光(352 nm)的激发下,样品的发射光谱显示出典型的Dy3+特征发射峰,分别是485 nm处的蓝光、578 nm处的黄光,以及650~700 nm的红光。当Dy3+摩尔浓度x=0.03时,荧光粉出现浓度猝灭效应,其浓度猝灭机制为电偶极子-电偶极子相互作用(d-d)。YMT∶Dy3+荧光粉的CIE色坐标明显受到Dy3+的浓度影响,其中YMT∶0.02Dy3+荧光粉的CIE色坐标为(0.406,0.407),位于暖白光区,可作为一种暖白光荧光粉应用于近紫外激发白光发光二极管(...  相似文献   

19.
为实现KDP、CZT等光学元件用软脆功能晶体坯料的精密切割,研究了悬砂法制备电镀金刚石微粉磨料线锯工艺方法,通过扫描电镜形貌观测,试验分析了不同电流密度、电镀时间和金刚石悬浮量条件下制备的线锯样件质量,探讨了工艺参数对线锯电镀质量的影响及缺陷产生的原因.试验结果表明,悬砂法制备金刚石微粉磨料线锯能够克服埋砂法存在的微粉磨粒分散性差、易导致连续运动的丝线挂砂困难等问题,在合理的工艺参数条件下能够获得磨料分布均匀的电镀金刚石微粉磨料丝线.  相似文献   

20.
纳米金刚石兼具纳米材料和金刚石的双重特性,呈现出与微米金刚石、块体金刚石截然不同的特点。本文以不同尺寸金刚石样品为研究对象,采用扫描电镜、X射线衍射、光谱学、热重分析技术对其结构、光学性能和热稳定性进行研究。结果显示样品尺寸分别为300 μm、30 μm和100 nm,大尺寸样品结晶质量较好,富含孤氮杂质,为Ⅰb型金刚石。纳米金刚石样品结晶较差,含有少量石墨残留,并含有H2O、N—H和C—H键,说明其表面存在诸多有机活性基团。大尺寸金刚石样品存在中性和带负电荷的氮空位缺陷,产生较强荧光,而纳米金刚石由于存在诸多的有机基团和表面缺陷,形成非辐射中心,导致荧光猝灭。大尺寸样品在300~525 nm具有较强吸收,而纳米金刚石样品在紫外-可见-近红外整个区域均呈现出较强吸收,透过率显著较低。随着颗粒尺寸的减小,金刚石的起始氧化温度逐渐下降,氧化速率降低,因此大颗粒尺寸金刚石样品具有更好的热稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号