首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intramolecular Csp3–H and/or C–C bond amination is very important in modern organic synthesis due to its efficiency in the construction of diversified N-heterocycles. Herein, we report a novel intramolecular cyclization of alkyl azides for the synthesis of cyclic imines and tertiary amines through selective Csp3–H and/or C–C bond cleavage. Two C–N single bonds or a C Created by potrace 1.16, written by Peter Selinger 2001-2019 N double bond are efficiently constructed in these transformations. The carbocation mechanism differs from the reported metal nitrene intermediates and therefore enables metal-free and new transformation.

A novel intramolecular cyclization of alkyl azides for the synthesis of cyclic imines and tertiary amines has been developed. The aliphatic C–H or C–C bond was selectively cleaved with the efficient formation of two C–N single bonds or a C Created by potrace 1.16, written by Peter Selinger 2001-2019 N double bond.  相似文献   

2.
A metal-free C–H [5 + 1] annulation reaction of 2-arylanilines with diazo compounds has been achieved, giving rise to two types of prevalent phenanthridines via highly selective C–C cleavage. Compared to the simple N–H insertion manipulation of diazo, this method elegantly accomplishes a tandem N–H insertion/SEAr/C–C cleavage/aromatization reaction, and the synthetic utility of this new transformation is exemplified by the succinct syntheses of trisphaeridine and bicolorine alkaloids.

A metal-free C–H [5 + 1] annulation reaction of 2-arylanilines with diazo compounds has been achieved, giving rise to two types of prevalent phenanthridines via highly selective C–C cleavage.  相似文献   

3.
A Pd-catalyzed dearomative three-component C–C bond formation of bromoarenes with diazo compounds and malonates was developed. Various bromoarenes ranging from benzenoids to azines and heteroles were transformed to the corresponding substituted alicyclic molecules. The key to this reaction is the generation of a benzyl–palladium intermediate, which reacts with malonates to form a Pd–O-enolate species. Strikingly, the present method enabled rapid access to multi-substituted alicycles through subsequent elaboration of dearomatized products.

A catalytic three-component C–C bond forming dearomatization of bromoarenes was developed, enabling rapid access to multi-substituted alicycles.  相似文献   

4.
In the past decade, selective C–C and C-heteroatom bond construction through palladium-catalyzed direct C–H bond functionalization has been extensively studied by employing a variety of directing groups. Within this category, direct asymmetric C(sp2)–H and C(sp3)–H activation for the construction of highly enantiomerically enriched skeletons still progressed at a slow pace. This minireview briefly introduces the major advances in the field for palladium-catalyzed direct asymmetric C–H bond functionalization via the directing group strategy.

This minireview introduces Pd-catalyzed direct asymmetric C–H functionalization reactions using a directing group strategy.  相似文献   

5.
The Ni-catalyzed reaction of ortho-phenoxy-substituted aromatic amides with alkynes in the presence of LiOtBu as a base results in C–O/N–H annulation with the formation of 1(2H)-isoquinolinones. The use of a base is essential for the reaction to proceed. The reaction proceeds, even in the absence of a ligand, and under mild reaction conditions (40 °C). An electron-donating group on the aromatic ring facilitates the reaction. The reaction was also applicable to carbamate (C–O bond activation), methylthio (C–S bond activation), and cyano (C–CN bond activation) groups as leaving groups.

The Ni-catalyzed reaction of ortho-phenoxy-substituted aromatic amides with alkynes in the presence of LiOtBu as a base results in C–O/N–H annulation with the formation of 1(2H)-isoquinolinones.  相似文献   

6.
7.
A unique chain-rupturing transformation that converts an ether functionality into two hydrocarbyl units and carbon monoxide is reported, mediated by iridium(i) complexes supported by aminophenylphosphinite (NCOP) pincer ligands. The decarbonylation, which involves the cleavage of one C–C bond, one C–O bond, and two C–H bonds, along with formation of two new C–H bonds, was serendipitously discovered upon dehydrochlorination of an iridium(iii) complex containing an aza-18-crown-6 ether macrocycle. Intramolecular cleavage of macrocyclic and acyclic ethers was also found in analogous complexes featuring aza-15-crown-5 ether or bis(2-methoxyethyl)amino groups. Intermolecular decarbonylation of cyclic and linear ethers was observed when diethylaminophenylphosphinite iridium(i) dinitrogen or norbornene complexes were employed. Mechanistic studies reveal the nature of key intermediates along a pathway involving initial iridium(i)-mediated double C–H bond activation.

A unique chain-rupturing transformation that converts an ether functionality into two hydrocarbyl units and carbon monoxide is reported.  相似文献   

8.
By employing an N-heterocyclic carbene (NHC) catalyst, we developed a versatile catalytic system that enables deaminative cross-coupling reactions of aldehydes with redox-active pyridinium salts. Katritzky pyridinium salts behave as single-electron oxidants capable of generating alkyl radicals enabled by the redox properties of the enolate form of Breslow intermediates. The resultant alkyl radical undergoes efficient recombination with the NHC-bound aldehyde-derived carbonyl carbon radical for the formation of a C–C bond. The mild and transition metal-free reaction conditions tolerate a broad range of functional groups, and its utility has been further demonstrated by the modification of a series of peptide feedstocks and application to the three-component dicarbofunctionalization of olefins.

By employing an N-heterocyclic carbene (NHC) catalyst, we developed a versatile catalytic system that enables deaminative cross-coupling reactions of aldehydes with redox-active pyridinium salts.  相似文献   

9.
A metal-templated synthetic route to cyclic (aryl)(ylidic) mesoionic carbenes (CArY-MICs) featuring an endocyclic P-ylide is presented. This approach, which requires metal templates with two cis-positioned open coordination sites, is based on the controlled cyclisation of a P,P′-diisopropyl-substituted 2,2′-diphosphinotolane (1) and leads to chelate complexes coordinated by a phosphine donor and the CArY-MIC carbon atom. The C–P bond formation involved in the former partial cyclisation of 1 proceeds under mild conditions and was shown to be applicable all over the d-block. In the presence of a third fac-positioned open coordination site, the P–C bond formation was found to be reversible, as shown for a series of molybdenum complexes. DFT modelling studies are in line with an interpretation of the target compounds as CArY-MICs.

A metal-templated synthesis of cyclic (aryl)(ylidic)mesoionic carbene complexes (CArY-MICs) is presented. In the case of molybdenum carbonyls, the crucial P–C bond formation, which occurs during CArY-MIC formation, was found to be reversible.  相似文献   

10.
We report that Au atoms within van der Waals complexes serve as catalysts for the first time. This was observed in ionization-induced chemistry of 1,6-hexanediol–Au and 1,8-octanediol–Au complexes formed in superfluid helium nanodroplets, where the addition of Au atom(s) made C2H4+ the sole prominent product in dissociative reactions. Density functional theory (DFT) calculations showed that the Au atom significantly strengthens all of the C–C bonds and weakens the C–O bonds in the meantime, making the C–C bonds stronger than the two C–O bonds in the ionized complexes. This leads to a preferential cleavage of the C–O bonds and thus a strong catalytic effect of the Au atoms in the reactions.

Single Au atoms within van der Waals complexes are found to serve as catalysts in ionisation-induced chemistry for the first time.  相似文献   

11.
The deprotonation of propargylic C–H bonds for subsequent functionalization typically requires stoichiometric metal alkyl or amide reagents. In addition to the undesirable generation of stoichiometric metallic waste, these conditions limit the functional group compatibility and versatility of this functionalization strategy and often result in regioisomeric mixtures. In this article, we report the use of dicarbonyl cyclopentadienyliron(ii) complexes for the generation of propargylic anion equivalents toward the direct electrophilic functionalization of propargylic C–H bonds under mild, catalytic conditions. This technology was applied to the direct conversion of C–H bonds to C–C bonds for the synthesis of several functionalized scaffolds through a one-pot cross dehydrogenative coupling reaction with tetrahydroisoquinoline and related privileged heterocyclic scaffolds. A series of NMR studies and deuterium-labelling experiments indicated that the deprotonation of the propargylic C–H bond was the rate-determining step when a Cp*Fe(CO)2-based catalyst system was employed.

[Cp*Fe(CO)2]+ facilitates the α-deprotonation of unsaturated C–C bond for propargylic and allylic C–H functionalization. Mechanistic studies reveal insights into the superior performance of the electron-rich and hindered ligand on iron.  相似文献   

12.
The advent of saturated N-heterocycles as valuable building blocks in medicinal chemistry has led to the development of new methods to construct such nitrogen-containing cyclic frameworks. Despite the apparent strategic clarity, intramolecular C–H aminations with metallonitrenes have only sporadically been explored in this direction because of the intractability of the requisite alkyl nitrenes. Here, we report copper-catalysed intramolecular amination using an alkyl nitrene generated from substituted isoxazolidin-5-ones upon N–O bond cleavage. The copper catalysis exclusively aminates aromatic C(sp2)–H bonds among other potentially reactive groups, offering a solution to the chemoselectivity problem that has been troublesome with rhodium catalysis. A combined experimental and computational study suggested that the active species in the current cyclic β-amino acid synthesis is a dicopper alkyl nitrene, which follows a cyclisation pathway distinct from the analogous alkyl metallonitrene.

Copper-catalysed conditions have been developed for the chemoselective synthesis of cyclic β-amino acids.  相似文献   

13.
Selective carbon–carbon bond activation is important in chemical industry and fundamental organic synthesis, but remains challenging. In this study, non-polar unstrained Csp2–Csp3 and Csp2–Csp2 bond activation was achieved by B(OMe)3/B2pin2-mediated fragmentation borylation. Various indole derivatives underwent C2-regioselective C–C bond activation to afford two C–B bonds under transition-metal-free conditions. Preliminary mechanistic investigations suggested that C–B bond formation and C–C bond cleavage probably occurred in a concerted process. This new reaction mode will stimulate the development of reactions based on inert C–C bond activation.

Non-polar unstrained Csp2–Csp3 and Csp2–Csp2 bond activation was achieved via B(OMe)3/B2pin2-mediated fragmentation borylation, in which C–C bond activation occurred regioselectively at the C2-position in various substituted indoles.  相似文献   

14.
Molecular engineering enabling reversible transformation between helical and planar conformations is described herein. Starting from easily available 2-(pyridin-2-yl)anilines and alkynes, a one-pot strategy is set up for the synthesis of aza[4]helicenes via two successive rhodium-catalyzed C–H activation/cyclizations. Helical pyrrolophenanthridiziniums can be transformed into planar conformations through the cleavage of acidic pyrrole N–H, leading to turn-off fluorescence. NMR spectra, single crystal X-ray diffraction and DFT calculations demonstrate that the formation of an intramolecular C–H⋯N hydrogen bond is beneficial to stabilize the pyrrole nitrogen anion of the planar molecule and provide increased planarity. The reversible conformation transformations can be finely adjusted by the electron-donating and -withdrawing groups on the π+-fused pyrrole skeleton in the physiological pH range, thus affording an opportunity for pH-controlled intracellular selective fluorescence imaging. Pyrrolophenanthridiziniums show turn-on fluorescence in lysosomes owing to the acidic environment of lysosomes and turn-off fluorescence out of lysosomes, indicating the occurrence of the deprotonation reaction outside lysosomes and the corresponding transformation from helical to planar conformations.

One-pot synthesis of aza[4]helicenes is accomplished through two successive C–H activation/cyclizations, which exhibit on/off fluorescence switching through reversible transformation between helical and planar conformations.  相似文献   

15.
This work reports an unprecedented cascade cyclization of 1-arylethynyl-2-alkyl-o-carboranes promoted by magnesium-mediated sp3 C–H activation. Treatment of 1-arylethynyl-2-alkyl-o-carboranes with MeMgBr gives a series of carborane-fused cyclopentanes in very good yields. Deuterium labelling and control experiments suggest that HMgBr, resulting in situ from the nucleophilic substitution of cage B–H bonds with Grignard reagent, initiates the reaction, in which magnesium-promoted intramolecular sp3 C–H activation serves as a key step. This work not only offers a new route for the synthesis of carborane-fused cyclopentanes, but also sheds some light on Mg-mediated C–H activation and functionalization.

An unprecedented cascade cyclization of 1-arylethynyl-2-alkyl-o-carboranes with Grignard reagent for synthesizing carborane-fused cyclopentanes has been disclosed, in which magnesium-mediated intramolecular sp3 C–H activation serves as a key step.  相似文献   

16.
Remote directing groups in a bifunctional molecule do not always behave independently of one another in C–H activation chemistries. A combined DFT and experimental mechanistic study to provide enhanced Ir catalysts for chemoselective C–H deuteration of bifunctional aryl primary sulfonamides is described. This provides a pharmaceutically-relevant and limiting case study in using binding energies to predict intramolecular directing group chemoselectivity. Rational catalyst design, guided solely by qualitative substrate–catalyst binding free energy predictions, enabled intramolecular discrimination between competing ortho-directing groups in C–H activation and delivered improved catalysts for sulfonamide-selective C–H deuteration. As a result, chemoselective binding of the primary sulfonamide moiety was achieved in the face of an intrinsically more powerful pyrazole directing group present in the same molecule. Detailed DFT calculations and mechanistic experiments revealed a breakdown in the applied binding free energy model, illustrating the important interconnectivity of ligand design, substrate geometry, directing group cooperativity, and solvation in supporting DFT calculations. This work has important implications around attempts to predict intramolecular C–H activation directing group chemoselectivity using simplified monofunctional fragment molecules. More generally, these studies provide insights for catalyst design methods in late-stage C–H functionalisation.

In C–H activation chemistries, the interpretation of the influence of remote directing groups in a bifunctional molecule depends on the in silico method used to inform catalyst design.  相似文献   

17.
3,5-Ethenoporphyrin is a π-extended porphyrin containing a fused ethene unit between the meso- and β-positions, exhibiting unique contribution of macrocyclic antiaromaticity. We have recently reported that its analogue, etheno-fused diporphyrin, underwent thermal [2 + 2] cycloaddition to furnish X-shaped cyclobutane-linked tetraporphyrins. Here we demonstrate that the cyclobutane-ring formation is dynamically redox-active. Namely, the tetraporphyrin underwent two-step four-electron oxidation to afford two etheno-fused diporphyrin dications. The reduction of the resulting dication regenerated the cyclobutane-linked tetraporphyrin. The dication was sufficiently stable to allow its isolation under ambient conditions. The structure of the dication has been confirmed by 1H NMR spectroscopy and X-ray diffraction analysis. Importantly, the simultaneous double C–C bond cleavage in the cyclopropane ring in the tetraporphyrin is exceptional among dynamic redox (dyrex) systems to achieve large structural changes, thus offering new insights for the design of novel redox-active functional organic materials for electrochromic dyes, organic batteries, and organic memories.

A four-electron oxidation of an X-shaped tetraporphyrin affords stable etheno-fused diporphyrin dications through double C–C bond cleavage. The reduction of the dication recovers the tetraporphyrin via a thermal [2 + 2] cycloaddition.  相似文献   

18.
Non-catalysed and catalysed reactions of aluminium reagents with furans, dihydrofurans and dihydropyrans were investigated and lead to ring-expanded products due to the insertion of the aluminium reagent into a C–O bond of the heterocycle. Specifically, the reaction of [{(ArNCMe)2CH}Al] (Ar = 2,6-di-iso-propylphenyl, 1) with furans proceeded between 25 and 80 °C leading to dearomatised products due to the net transformation of a sp2 C–O bond into a sp2 C–Al bond. The kinetics of the reaction of 1 with furan were found to be 1st order with respect to 1 with activation parameters ΔH = +19.7 (±2.7) kcal mol−1, ΔS = −18.8 (±7.8) cal K−1 mol−1 and ΔG298 K = +25.3 (±0.5) kcal mol−1 and a KIE of 1.0 ± 0.1. DFT calculations support a stepwise mechanism involving an initial (4 + 1) cycloaddition of 1 with furan to form a bicyclic intermediate that rearranges by an α-migration. The selectivity of ring-expansion is influenced by factors that weaken the sp2 C–O bond through population of the σ*-orbital. Inclusion of [Pd(PCy3)2] as a catalyst in these reactions results in expansion of the substrate scope to include 2,3-dihydrofurans and 3,4-dihydropyrans and improves selectivity. Under catalysed conditions, the C–O bond that breaks is that adjacent to the sp2C–H bond. The aluminium(iii) dihydride reagent [{(MesNCMe)2CH}AlH2] (Mes = 2,4,6-trimethylphenyl, 2) can also be used under catalytic conditions to effect a dehydrogenative ring-expansion of furans. Further mechanistic analysis shows that C–O bond functionalisation occurs via an initial C–H bond alumination. Kinetic products can be isolated that are derived from installation of the aluminium reagent at the 2-position of the heterocycle. C–H alumination occurs with a KIE of 4.8 ± 0.3 consistent with a turnover limiting step involving oxidative addition of the C–H bond to the palladium catalyst. Isomerisation of the kinetic C–H aluminated product to the thermodynamic C–O ring expansion product is an intramolecular process that is again catalysed by [Pd(PCy3)2]. DFT calculations suggest that the key C–O bond breaking step involves attack of an aluminium based metalloligand on the 2-palladated heterocycle. The new methodology has been applied to important platform chemicals from biomass.

Non-catalysed and catalysed reactions of aluminium reagents with furans, dihydrofurans and dihydropyrans were investigated and lead to ring-expanded products due to the insertion of the aluminium reagent into a C–O bond of the heterocycle.  相似文献   

19.
Indole-tethered ynones form an intramolecular electron donor–acceptor complex that can undergo visible-light-induced charge transfer to promote thiyl radical generation from thiols. This initiates a novel radical chain sequence, based on dearomatising spirocyclisation with concomitant C–S bond formation. Sulfur-containing spirocycles are formed in high yields using this simple and mild synthetic protocol, in which neither transition metal catalysts nor photocatalysts are required. The proposed mechanism is supported by various mechanistic studies, and the unusual radical initiation mode represents only the second report of the use of an intramolecular electron donor–acceptor complex in synthesis.

Indole-tethered ynones form an intramolecular electron donor–acceptor complex that can undergo visible-light-induced charge transfer to promote thiyl radical generation from thiols.  相似文献   

20.
Nickel-catalyzed three-component alkene difunctionalization has rapidly emerged as a powerful tool for forging two C–C bonds in a single reaction. Building upon the powerful modes of bond construction in traditional two-component cross-coupling, various research groups have demonstrated the versatility of nickel in enabling catalytic 1,2-dicarbofunctionalization using a wide range of carbon-based electrophiles and nucleophiles and in a fully intermolecular fashion. Though this area has emerged only recently, the last few years have witnessed a proliferation of publications on this topic, underscoring the potential of this strategy to develop into a general platform that offers high regio- and stereoselectivity. This minireview highlights the recent progress in the area of intermolecular 1,2-dicarbofunctionalization of alkenes via nickel catalysis and discusses lingering challenges within this reactivity paradigm.

Nickel-catalyzed three-component alkene difunctionalization has rapidly emerged as a powerful tool for forging multiple C–C bonds in a single step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号