首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dinickel(0)–N2 complex, stabilized with a rigid acridane-based PNP pincer ligand, was studied for its ability to activate C(sp2)–H and C(sp2)–O bonds. Stabilized by a Ni–μ–N2–Na+ interaction, it activates C–H bonds of unfunctionalized arenes, affording nickel–aryl and nickel–hydride products. Concomitantly, two sodium cations get reduced to Na(0), which was identified and quantified by several methods. Our experimental results, including product analysis and kinetic measurements, strongly suggest that this C(sp2)–H activation does not follow the typical oxidative addition mechanism occurring at a low-valent single metal centre. Instead, via a bimolecular pathway, two powerfully reducing nickel ions cooperatively activate an arene C–H bond and concomitantly reduce two Lewis acidic alkali metals under ambient conditions. As a novel synthetic protocol, nickel(ii)–aryl species were directly synthesized from nickel(ii) precursors in benzene or toluene with excess Na under ambient conditions. Furthermore, when the dinickel(0)–N2 complex is accessed via reduction of the nickel(ii)–phenyl species, the resulting phenyl anion deprotonates a C–H bond of glyme or 15-crown-5 leading to C–O bond cleavage, which produces vinyl ether. The dinickel(0)–N2 species then cleaves the C(sp2)–O bond of vinyl ether to produce a nickel(ii)–vinyl complex. These results may provide a new strategy for the activation of C–H and C–O bonds mediated by a low valent nickel ion supported by a structurally rigidified ligand scaffold.

A structurally rigidified nickel(0) complex was found to be capable of cleaving both C(sp2)–H and C(sp2)–O bonds.  相似文献   

2.
Transition metal-catalysed C–H bond functionalisations have been extensively developed in organic and medicinal chemistry. Among these catalytic approaches, the selective activation of C(sp3)–H and C(sp2)–H bonds is particularly appealing for its remarkable synthetic versatility, yet it remains highly challenging. Herein, we demonstrate the first example of temperature-dependent selective C–H functionalisation of unactivated C(sp3)–H or C(sp2)–H bonds at remote positions through palladium catalysis using 7-pyridyl-pyrazolo[1,5-a]pyrimidine as a new directing group. At 120 °C, C(sp3)–H arylation was triggered by the chelation of a rare [6,5]-fused palladacycle, whereas at 140 °C, C(sp2)–H arylation proceeded instead through the formation of a 16-membered tetramer containing four 7-pyridyl-pyrazolo[1,5-a]pyrimidine–palladium chelation units. The subsequent mechanistic study revealed that both C–H activations shared a common 6-membered palladacycle intermediate, which was then directly transformed to either the [6,5]-fused palladacycle for C(sp3)–H activation at 120 °C or the tetramer for C(sp2)–H arylation at 140 °C with catalytic amounts of Pd(OAc)2 and AcOH. Raising the temperature from 120 °C to 140 °C can also convert the [6,5]-fused palladacycle to the tetramer with the above-mentioned catalysts, hence completing the C(sp2)–H arylation ultimately.

Unprecedented 16-membered tetramer or [6,5]-fused palladacycle, mutually shadowboxing-like transformed from the shared common intermediate, accomplishes the Pd-catalysed temperature-dependent selective arylation of C(sp2)–H or C(sp3)–H.  相似文献   

3.
Modulating the reaction selectivity is highly attractive and pivotal to the rational design of synthetic regimes. The defluorinative functionalization of gem-difluorocyclopropanes constitutes a promising route to construct β-vinyl fluorine scaffolds, whereas chemo- and regioselective access to α-substitution patterns remains a formidable challenge. Presented herein is a robust Pd/NHC ligand synergistic strategy that could enable the C–F bond functionalization with exclusive α-regioselectivity with simple ketones. The key design adopted enolates as π-conjugated ambident nucleophiles that undergo inner-sphere 3,3′-reductive elimination warranted by the sterically hindered-yet-flexible Pd-PEPPSI complex. The excellent branched mono-defluorinative alkylation was achieved with a sterically highly demanding IHept ligand, while subtly less bulky SIPr acted as a bifunctional ligand that not only facilitated α-selective C(sp3)–F cleavage, but also rendered the newly-formed C(sp2)–F bond as the linchpin for subsequent C–O bond formation. These examples represented an unprecedented ligand-controlled regioselective and chemodivergent approach to various mono-fluorinated terminal alkenes and/or furans from the same readily available starting materials.

A robust Pd/NHC ligand synergistic strategy that enables the exquisite regioselective and chemodivergent C–F bond functionalization of gem-difluorocyclopropanes with simple ketones, is reported.  相似文献   

4.
A diimine ligand having two [2.2]paracyclophanyl substituents at the N atoms (L1) was prepared from the reaction of amino[2.2]paracyclophane with acenaphtenequinone. The ligand reacts with NiBr2(dme) (dme: 1,2-dimethoxyethane) to form the dibromonickel complex with (R,R) and (S,S) configuration, NiBr2(L1). The structure of the complex was confirmed by X-ray crystallography. NiBr2(L1) catalyzes oligomerization of ethylene in the presence of methylaluminoxane (MAO) co-catalyst at 10–50 °C to form a mixture of 1- and 2-butenes after 3 h. The reactions for 6 h and 8 h at 25 °C causes further increase of 2-butene formed via isomerization of 1-butene and formation of hexenes. Reaction of 1-hexene catalyzed by NiBr2(L1)–MAO produces 2-hexene via isomerization and C12 and C18 hydrocarbons via oligomerization. Consumption of 1-hexene of the reaction obeys first-order kinetics. The kinetic parameters were obtained to be ΔG = 93.6 kJ mol−1, ΔH = 63.0 kJ mol−1, and ΔS = −112 J mol−1deg−1. NiBr2(L1) catalyzes co-dimerization of ethylene and 1-hexene to form C8 hydrocarbons with higher rate and selectivity than the tetramerization of ethylene.  相似文献   

5.
The search for novel, atom-economic methods for the formation of C–C bonds is of crucial importance in synthetic chemistry. Especially attractive are reactions where C–C bonds are formed through C–H activation, but the coupling of unactivated, alkane-type Csp3–H bonds remains an unsolved challenge. Here, we report iridium-mediated intramolecular coupling reactions involving up to four unactivated Csp3–H bonds to give carbon–carbon double bonds under the extrusion of dihydrogen. The reaction described herein is completely reversible and the direction can be controlled by altering the reaction conditions. With a hydrogen acceptor present a C–C double bond is formed, while reacting under dihydrogen pressure leads to the reverse process, with some of the steps representing net Csp3–Csp3 bond cleavage. Mechanistic investigations revealed a conceptually-novel overall reactivity pattern where insertion or deinsertion of an Ir carbene moiety, formed via double C–H activation, into an Ir–C bond is responsible for the key C–C bond formation and cleavage steps.  相似文献   

6.
A stepwise build-up of multi-substituted Csp3 carbon centers is an attractive, conceptually simple, but often synthetically challenging type of disconnection. To this end, this report describes how gem-α,α-dimetalloid-substituted benzylic reagents bearing boron/silicon or boron/tin substituent sets are an excellent stepping stone towards diverse substitution patterns. These gem-dimetalloids were readily accessed, either by known carbenoid insertion into C–B bonds or by the newly developed scalable deprotonation/metallation approach. Highly chemoselective transformations of either the C–Si (or C–Sn) or the C–B bonds in the newly formed gem-Csp3 centers have been achieved through a set of approaches, with a particular focus on exploiting the synthetically versatile polarity reversal in organometalloids by λ3-aryliodanes. Of particular note is the metal-free arylation of the C–Si (or C–Sn) bonds in such gem-dimetalloids via the iodane-guided C–H coupling approach. DFT calculations show that this transfer of the (α-Bpin)benzyl group proceeds via unusual [5,5]-sigmatropic rearrangement and is driven by the high-energy iodine(iii) center. As a complementary tool, the gem-dimetalloid C–B bond is shown to undergo a potent and chemoselective Suzuki–Miyaura arylation with diverse Ar–Cl, thanks to the development of the reactive gem-α,α-silyl/BF3K building blocks.

This work explores divergent reactivity of the benzylic gem-boron–silicon and boron–tin double nucleophiles, including the arylation of the C–B bond with Ar–Cl, along with a complementary oxidative λ3-iodane-guided arylation of the C–Si/Sn moiety.  相似文献   

7.
Deuterium labelled compounds are of significant importance in chemical mechanism investigations, mass spectrometric studies, diagnoses of drug metabolisms, and pharmaceutical discovery. Herein, we report an efficient hydrogen deuterium exchange reaction using deuterium oxide (D2O) as the deuterium source, enabled by merging a tetra-n-butylammonium decatungstate (TBADT) hydrogen atom transfer photocatalyst and a thiol catalyst under light irradiation at 390 nm. This deuteration protocol is effective with formyl C–H bonds and a wide range of hydridic C(sp3)–H bonds (e.g. α-oxy, α-thioxy, α-amino, benzylic, and unactivated tertiary C(sp3)–H bonds). It has been successfully applied to the high incorporation of deuterium in 38 feedstock chemicals, 15 pharmaceutical compounds, and 6 drug precursors. Sequential deuteration between formyl C–H bonds of aldehydes and other activated hydridic C(sp3)–H bonds can be achieved in a selective manner.

A selective hydrogen deuterium exchange reaction with formyl C–H bonds and a wide range of hydridic C(sp3)–H bonds has been achieved by merging tetra-n-butylammonium decatungstate photocatalyst and a thiol catalyst under 390 nm light irradiation.  相似文献   

8.
The Ni-catalyzed reaction of ortho-phenoxy-substituted aromatic amides with alkynes in the presence of LiOtBu as a base results in C–O/N–H annulation with the formation of 1(2H)-isoquinolinones. The use of a base is essential for the reaction to proceed. The reaction proceeds, even in the absence of a ligand, and under mild reaction conditions (40 °C). An electron-donating group on the aromatic ring facilitates the reaction. The reaction was also applicable to carbamate (C–O bond activation), methylthio (C–S bond activation), and cyano (C–CN bond activation) groups as leaving groups.

The Ni-catalyzed reaction of ortho-phenoxy-substituted aromatic amides with alkynes in the presence of LiOtBu as a base results in C–O/N–H annulation with the formation of 1(2H)-isoquinolinones.  相似文献   

9.
Visible light driven nitrene transfer and insertion reactions of organic azides are an attractive strategy for the design of C–N bond formation reactions under mild reaction conditions, the challenge being lack of selectivity as a free nitrene reactive intermediate is usually involved. Herein is described an iron(iii) porphyrin catalysed sp3 C–H amination and alkene aziridination with selectivity by using organic azides as the nitrogen source under blue LED light (469 nm) irradiation. The photochemical reactions display chemo- and regio-selectivity and are effective for the late-stage functionalization of natural and bioactive compounds with complexity. Mechanistic studies revealed that iron porphyrin plays a dual role as a photosensitizer and as a catalyst giving rise to a reactive iron–nitrene intermediate for subsequent C–N bond formation.

An iron(iii) porphyrin catalysed sp3 C–H amination and alkene aziridination with broad substrate scope under mild conditions is conducted, with selectivity through the use of organic azides as the nitrogen source under blue LED light irradiation.  相似文献   

10.
In the past the formyloxyl radical, HC(O)O˙, had only been rarely experimentally observed, and those studies were theoretical-spectroscopic in the context of electronic structure. The absence of a convenient method for the preparation of the formyloxyl radical has precluded investigations into its reactivity towards organic substrates. Very recently, we discovered that HC(O)O˙ is formed in the anodic electrochemical oxidation of formic acid/lithium formate. Using a [CoIIIW12O40]5− polyanion catalyst, this led to the formation of phenyl formate from benzene. Here, we present our studies into the reactivity of electrochemically in situ generated HC(O)O˙ with organic substrates. Reactions with benzene and a selection of substituted derivatives showed that HC(O)O˙ is mildly electrophilic according to both experimentally and computationally derived Hammett linear free energy relationships. The reactions of HC(O)O˙ with terminal alkenes significantly favor anti-Markovnikov oxidations yielding the corresponding aldehyde as the major product as well as further oxidation products. Analysis of plausible reaction pathways using 1-hexene as a representative substrate favored the likelihood of hydrogen abstraction from the allylic C–H bond forming a hexallyl radical followed by strongly preferred further attack of a second HC(O)O˙ radical at the C1 position. Further oxidation products are surmised to be mostly a result of two consecutive addition reactions of HC(O)O˙ to the C Created by potrace 1.16, written by Peter Selinger 2001-2019 C double bond. An outer-sphere electron transfer between the formyloxyl radical donor and the [CoIIIW12O40]5− polyanion acceptor forming a donor–acceptor [D+–A] complex is proposed to induce the observed anti-Markovnikov selectivity. Finally, the overall reactivity of HC(O)O˙ towards hydrogen abstraction was evaluated using additional substrates. Alkanes were only slightly reactive, while the reactions of alkylarenes showed that aromatic substitution on the ring competes with C–H bond activation at the benzylic position. C–H bonds with bond dissociation energies (BDE) ≤ 85 kcal mol−1 are easily attacked by HC(O)O˙ and reactivity appears to be significant for C–H bonds with a BDE of up to 90 kcal mol−1. In summary, this research identifies the reactivity of HC(O)O˙ towards radical electrophilic substitution of arenes, anti-Markovnikov type oxidation of terminal alkenes, and indirectly defines the activity of HC(O)O˙ towards C–H bond activation.

The formyloxyl radical, formed electrochemically, is electrophilic, yields anti-Markovnikov oxidation products from alkenes, and is effective for C–H bond activation.  相似文献   

11.
How far can we push the limits in removing stereoelectronic protection from an unstable intermediate? We address this question by exploring the interplay between the primary and secondary stereoelectronic effects in the Baeyer–Villiger (BV) rearrangement by experimental and computational studies of γ-OR-substituted γ-peroxylactones, the previously elusive non-strained Criegee intermediates (CI). These new cyclic peroxides were synthesized by the peroxidation of γ-ketoesters followed by in situ cyclization using a BF3·Et2O/H2O2 system. Although the primary effect (alignment of the migrating C–Rm bond with the breaking O–O bond) is active in the 6-membered ring, weakening of the secondary effect (donation from the OR lone pair to the breaking C–Rm bond) provides sufficient kinetic stabilization to allow the formation and isolation of stable γ-hydroperoxy-γ-peroxylactones with a methyl-substituent in the C6-position. Furthermore, supplementary protection is also provided by reactant stabilization originating from two new stereoelectronic factors, both identified and quantified for the first time in the present work. First, an unexpected boat preference in the γ-hydroperoxy-γ-peroxylactones weakens the primary stereoelectronic effects and introduces a ∼2 kcal mol−1 Curtin–Hammett penalty for reacquiring the more reactive chair conformation. Second, activation of the secondary stereoelectronic effect in the TS comes with a ∼2–3 kcal mol−1 penalty for giving up the exo-anomeric stabilization in the 6-membered Criegee intermediate. Together, the three new stereoelectronic factors (inverse α-effect, misalignment of reacting bonds in the boat conformation, and the exo-anomeric effect) illustrate the richness of stereoelectronic patterns in peroxide chemistry and provide experimentally significant kinetic stabilization to this new class of bisperoxides. Furthermore, mild reduction of γ-hydroperoxy-γ-peroxylactone with Ph3P produced an isolable γ-hydroxy-γ-peroxylactone, the first example of a structurally unencumbered CI where neither the primary nor the secondary stereoelectronic effect are impeded. Although this compound is relatively unstable, it does not undergo the BV reaction and instead follows a new mode of reactivity for the CI – a ring-opening process.

Protecting stereoelectronic effects prevent Baeyer–Villiger rearrangement and stabilize γ-OX-γ-peroxylactones (X = H, OH), the previously elusive non-strained Criegee intermediates.  相似文献   

12.
With the increasing awareness of sustainable chemistry principles, the development of an efficient and mild strategy for C(sp3)–H bond activation of nitrogen-containing compounds without the utilization of any oxidant and metal is still highly desired and challenging. Herein, we present a metal-free reaction system that enables C–H bond functionalization of aliphatic sulfonamides using DABCO as a promoter under mild conditions, affording a series of α,β-unsaturated imines in good yields with high selectivities. This protocol tolerates a broad range of functionalities and can serve as a powerful synthetic tool for the late-stage modification of complex compounds. More importantly, control experiments and detailed DFT calculations suggest that this process involves [2 + 2] cyclization/ring-cleavage reorganization, which opens up a new platform for the establishment of other related reorganization reactions.

The mild base-promoted C−H bonds functionalization of amides to obtain α,β-unsaturated imines in good yields with high chemoselectivities was achieved. Control experiments show this process involves [2 + 2] cyclization/ring-cleavage reorganization.  相似文献   

13.
Complexes of the Lewis base-free cations (MeBDI)Mg+ and (tBuBDI)Mg+ with Ph–X ligands (X = F, Cl, Br, I) have been studied (MeBDI = HC[C(Me)N-DIPP]2 and tBuBDI = HC[C(tBu)N-DIPP]2; DIPP = 2,6-diisopropylphenyl). For the smaller β-diketiminate ligand (MeBDI) only complexes with PhF could be isolated. Heavier Ph–X ligands could not compete with bonding of Mg to the weakly coordinating anion B(C6F5)4. For the cations with the bulkier tBuBDI ligand, the full series of halobenzene complexes was structurally characterized. Crystal structures show that the Mg⋯X–Ph angle strongly decreases with the size of X: F 139.1°, Cl 101.4°, Br 97.7°, I 95.1°. This trend, which is supported by DFT calculations, can be explained with the σ-hole which increases from F to I. Charge calculation and Atoms-In-Molecules analyses show that Mg⋯F–Ph bonding originates from electrostatic attraction between Mg2+ and the very polar Cδ+–Fδ bond. For the heavier halobenzenes, polarization of the halogen atom becomes increasingly important (Cl < Br < I). Complexation with Mg leads in all cases to significant Ph–X bond activation and elongation. This unusual coordination of halogenated species to early main group metals is therefore relevant to C–X bond breaking.

Complexes of a highly Lewis acidic Mg cation and the full series of Ph–X (X = F, Cl, Br, I) have been structurally characterized. The Mg⋯X–Ph angle decreases with halogen size on account of the growing halogen σ-hole.  相似文献   

14.
Transition metal-catalysed functionalizations of inert C–H bonds to construct C–C bonds represent an ideal route in the synthesis of valuable organic molecules. Fine tuning of directing groups, catalysts and ligands has played a crucial role in selective C–H bond (sp2 or sp3) activation. Recent developments in these areas have assured a high level of regioselectivity in C–H olefination reactions. In this review, we have summarized the recent progress in the oxidative olefination of sp2 and sp3 C–H bonds with special emphasis on distal, atroposelective, non-directed sp2 and directed sp3 C–H olefination. The scope, limitation, and mechanism of various transition metal-catalysed olefination reactions have been described briefly.

Transition metal-catalysed functionalizations of inert C–H bonds to construct C–C bonds represent an ideal route in the synthesis of valuable organic molecules.  相似文献   

15.
The nitration of chitin monomer in a mixture of nitric acid and acetic anhydride was conducted and a highly nitrated (3R,4R,6R)-3-acetamido-6-((nitrooxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl trinitrate (1) was obtained. Its structure was fully characterized using infrared spectroscopy, NMR spectroscopy, elemental analysis, and X-ray diffraction. Compound 1 possesses good density (ρ: 1.721 g·cm−3) and has comparable detonation performance (Vd: 7717 m·s−1; P: 25.6 GPa) to that of nitrocellulose (NC: Vd: 7456 m·s−1; P: 23 GPa; Isp = 239 s) and microcrystalline nitrocellulose (MCNC; Vd: 7683 m·s−1; P: 25 GPa; Isp = 250 s). However, Compound 1 has much lower impact sensitivity (IS: 15 J) than the regular nitrocellulose (NC; IS: 3.2 J) and MCNC (IS: 2.8 J). Compound 1 was calculated to exhibit a good specific impulse (Isp: 240 s), which is comparable with NC (Isp: 239 s) and MCNC (Isp: 250 s). By replacing the nitrocellulose with Compound 1 in typical propellants JA2, M30, and M9, the specific impulse was improved by up to 4 s. These promising properties indicate that Compound 1 has a significant potential as an energetic component in solid propellants.  相似文献   

16.
In the past decade, selective C–C and C-heteroatom bond construction through palladium-catalyzed direct C–H bond functionalization has been extensively studied by employing a variety of directing groups. Within this category, direct asymmetric C(sp2)–H and C(sp3)–H activation for the construction of highly enantiomerically enriched skeletons still progressed at a slow pace. This minireview briefly introduces the major advances in the field for palladium-catalyzed direct asymmetric C–H bond functionalization via the directing group strategy.

This minireview introduces Pd-catalyzed direct asymmetric C–H functionalization reactions using a directing group strategy.  相似文献   

17.
The systematic investigation of substrate-bound α-amino acid auxiliaries has resulted in catalytic asymmetric C–H functionalization of cyclopropanes enabled by amino acid amides as chiral bidentate directing groups. The use of an Ile-NH2 auxiliary embedded in the substrate provided excellent levels of asymmetric induction (diastereomeric ratio of up to 72 : 1) in the Pd(ii)-catalyzed β-methylene C(sp3)–H bond activation of cyclopropanes and cross-coupling with aryl iodides.  相似文献   

18.
A supramolecular network [H4bdcbpy(NO3)2·H2O] (H4bdcbpy = 1,1′-Bis(3,5-dicarboxybenzyl)-4,4′-bipyridinium) (1) was prepared by a zwitterionic viologen carboxylate ligand in hydrothermal synthesis conditions. The as-synthesized (1) has been well characterized by means of single-crystal/powder X-ray diffraction, elemental analysis, thermogravimetric analysis and infrared and UV-vis spectroscopy. This compound possesses a three-dimensional supramolecular structure, formed by the hydrogen bond and π–π interaction between the organic ligands. This compound shows photochromic properties under UV light, as well as vapochromic behavior upon exposure to volatile amines and ammonia, in which the electron transfer from electron-rich parts to the electron-deficient viologen unit gives rise to colored radicals. Moreover, the intensive intermolecular H-bonding networks in 1 endows it with a proton conductivity of 1.06 × 10−3 S cm−1 in water at 90 °C.  相似文献   

19.
A chelation-assisted oxidative addition of gold(i) into the C–C bond of biphenylene is reported here. The presence of a coordinating group (pyridine, phosphine) in the biphenylene unit enabled the use of readily available gold(i) halide precursors providing a new, straightforward entry towards cyclometalated (N^C^C)- and (P^C)-gold(iii) complexes. Our study, combining spectroscopic and crystallographic data with DFT calculations, showcases the importance of neighboring, weakly coordinating groups towards the successful activation of strained C–C bonds by gold.

Pyridine and phosphine directing groups promote the C–C activation of biphenylene by readily available gold(i) halides rendering a new entry to (N^C^C)- and (P^C)-gold(iii) species.

Activation of C–C bonds by transition metals is challenging given their inertness and ubiquitous presence alongside competing C–H bonds.1 Both the intrinsic steric hindrance as well as the highly directional character of the p orbitals involved in the σC–C bond impose a high kinetic barrier for this type of processes.2,3 Biphenylene, a stable antiaromatic system featuring two benzene rings connected via a four-membered cycle, has found widespread application in the study of C–C bond activation. Since the seminal report from Eisch et al. on the oxidative addition of a nickel(0) complex into the C–C bond of biphenylene,4 several other late transition metals have been successfully applied in this context.5 Interestingly, despite the general reluctance of gold(i) to undergo oxidative addition,6 its oxidative insertion into the C–C bond of biphenylene was demonstrated in two consecutive reports by the groups of Toste7a and Bourissou,7b respectively. The high energy barrier associated with the oxidation of gold could be overcome by the utilization of gold(i) precursors bearing ligands that exhibit either a strongly electron-donating character (e.g. IPr = [1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene])7a or small bite angles (e.g. DPCb = diphosphino-carborane).7b,8 In line with these two approaches, more sophisticated bidentate (N^C)- and (P^N)-ligated gold(i) complexes have also been shown to aid the activation of biphenylene at ambient temperature (Scheme 1a).7c,dOpen in a separate windowScheme 1(a) Previous reports on oxidative addition of ligated gold(i) precursors onto biphenylene. (b) This work: pyridine- and phosphine-directed C–C bond activation of biphenylene by commercially available gold(i) halides.In this context, we hypothesized that the oxidative insertion of gold(i) into the C–C bond of biphenylene could be facilitated by the presence of a neighboring chelating group.9 This approach would not only circumvent the need for gold(i) precursors featuring strong σ-donor or highly tailored bidentate ligands but also offer a de novo entry towards interesting, less explored ligand templates. However, recent work by Breher and co-workers showcased the difficulty of achieving such a transformation.10Herein, we report the oxidative insertion of readily available gold(i) halide precursors into the C–C bond of biphenylene. The appendage of both pyridine and phosphine donors in close proximity to the σC–C bond bridging the two aromatic rings provides additional stabilization to the metal center and results in a de novo entry to cyclometalated (N^C^C)- and (P^C)gold(iii) complexes (Scheme 1b).Our study commenced with the preparation of 5-chloro-1-pyridino-biphenylene system 2via Pd-catalyzed Suzuki cross coupling reaction between 2-bromo-3-methylpyridine and 2-(5-chlorobiphenylen-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1 (Scheme 2).11 To our delight, the reaction of 2 with gold(i) iodide in toluene at 130 °C furnished complex κ3-(N^C^C)Au(iii)–I 3 in 60% yield.12,13 Complex 3 was isolated as yellow plate-type crystals from the reaction mixture and its molecular structure was unambiguously assigned by NMR spectroscopy, high-resolution mass spectrometry (HR-MS) and crystallographic analysis. Complex 3 exhibits the expected square-planar geometry around the metal center, with a Au–I bond length of 2.6558(3) Å.14 The choice of a neutral weakly bound gold(i)-iodide precursor is key for a successful reaction outcome: similar reactions in the presence of [(NHC)AuCl + AgSbF6] failed to deliver the desired biscyclometalation adducts, as reported by Breher et al. in ref. 10. The oxidative insertion of gold(i) iodide into the four-membered ring of pyridino-substituted biphenylene provides a novel and synthetically efficient entry to κ3-(N^C^C)gold(iii) halides. These species have recently found widespread application as precursors for the characterization of highly labile, catalytically relevant gold(iii) intermediates,15ad as well as for the preparation of highly efficient emitters in OLEDs.15eg Previous synthetic routes towards these attractive biscyclometalated gold(iii) systems involved microwave-assisted double C–H functionalization reactions that typically proceed with low to moderate yields.15aOpen in a separate windowScheme 2Synthesis of complex 3via oxidative addition of Au(i) into the C–C bond of pyridine-substituted biphenylene. X-ray structures of complex 3 with atoms drawn using 50% probability ellipsoids. Hydrogen atoms have been omitted for clarity. Additional selected bond distances [Å]: N–Au = 2.126(2), C1–Au = 1.973(2), C2–Au = 2.025(2), Au–I = 2.6558(3) and bond angles [deg]: N–Au–I = 99.25(6), N–Au–C1 = 79.82(9), C1–Au–C2 = 81.2(1), C2–Au–I = 99.73(8). For experimental details, see ESI.Encouraged by the successful results obtained with the pyridine-substituted biphenylene and considering the prominent use of phosphines in gold chemistry,6,16 we wondered whether the same reactivity would be observed for a P-containing system. To this end, both adamantyl- and tert-butyl-substituted phosphines were appended in C1 position of the biphenylene motif. Starting from 5-chlorobiphenylene-1-carbaldehyde 4, phosphine-substituted biphenylenes 5a and 5b could be accessed in 3 steps (aldehyde reduction to the corresponding alcohol, Appel reaction and nucleophilic displacement of the corresponding benzylic halide) in 64 and 57% overall yields, respectively.13 The reactions of 5a and 5b with commercially available gold(i) halides (Me2SAuCl and AuI) furnished the corresponding mononuclear complexes 7a–b and 8a–b, respectively (Scheme 3).13 All these complexes were fully characterized and the structures of 7a, 7b and 8a were unambiguously characterized by X-ray diffraction analysis.13 Interestingly, the nature of the halide has a clear effect on the chemical shift of the phosphine ligand so that a Δδ of ca. 5 ppm can be observed in the 31P NMR spectra of 7a–b (Au–Cl) compared to 8a–b (Au–I), the latter being the more deshielded. The Au–X bond length is also impacted, with a longer Au–I distance (2.5608(1) Å for 8a) compared to that measured in the Au–Cl analogue (2.2941(7) Å for 7a) (Δd = 0.27 Å).13Open in a separate windowScheme 3Synthesis and reactivity of complexes 7a–b, 8a–b, 9 and 10. X-ray structure of complexes 11b, 12 and 14 with atoms drawn using 50% probability ellipsoids. Hydrogen atoms have been omitted for clarity. For experimental details and X-ray structures see ESI.Despite numerous attempts to promote the C–C activation in these complexes,10,13 all reactions resulted in the formation of highly stable cationic species 11a–b and 12, which could be easily isolated from the reaction media. In the case of cationic mononuclear-gold(i) complexes 11, a ligand scrambling reaction in which the chloride ligand is replaced by a phosphine in the absence of a scavenger, a process previously described for gold(i) species, can be used to justify the reaction outcome.17 The formation of dinuclear gold complex 12 can be ascribed to the combination of a strong aurophilic interaction between the two gold centers (Au–Au = 2.8874(4) Å) and the stabilizing η2-coordination of the metal center to the aromatic ring of biphenylene. Similar η2-coordinated gold(i) complexes have been reported but, to the best of our knowledge, only as mononuclear species.18Taking into consideration the observed geometry of complexes 7a–b in the solid state,13 the facile formation of stable cationic species 11 and 12 and the lack of reactivity of the gold(i) iodides 8a–b, we hypothesized that the free rotation around the C–P bond was probably restricted, placing the gold(i) center away from the biphenylene system and thus preventing the desired oxidative insertion reaction. To overcome this problem, we set out to elongate the arm bearing the phosphine unit with an additional methylene group, introduced via a Wittig reaction from compound 4 to yield ligand 6, prepared in 4 steps in 27% overall yield. Coordination with Me2SAuCl and AuI resulted in gold(i) complexes 9 and 10, respectively (Scheme 3). The structure of 9 was unambiguously assigned by X-ray diffraction analysis and a similar environment around the metal center to that determined for complex 7a was observed for this complex.13With complexes 9 and 10 in hand, we explored their reactivity towards C–C activation of the four-membered ring of biphenylene.19 After chloride abstraction and upon heating at 100 °C for 5 hours, ring opening of the biphenylene system was observed for complex 9. Interestingly, formation of mono-cyclometalated adduct 13 was exclusively observed (the structure of 13 was confirmed by 1H, 13C, 31P, 19F, 11B and 2D NMR spectroscopy and HR-MS).13 The solvent appears to play a major role in this process, as performing the reaction in non-chlorinated solvents resulted in stable cationic complexes similar to 11.13,20,21 The presence of adventitious water is likely responsible for the formation of the monocyclometalated (P^C)gold(iii) complex 13 as when the reaction was carried out in C2H4Cl2 previously treated with D2O, the corresponding deuterated adduct 13-d could be detected in the reaction media. These results showcase the difficulties associated with the biscyclometalation for P-based complexes as well as the labile nature of the expected biscyclometalated adducts. Interestingly though, these processes can be seen as a de novo entry towards relatively underexplored (P^C)gold(iii) species.22The C–C activation was further confirmed by X-ray diffraction analysis of the phosphonium salt 14, which arise from the reductive elimination at the gold(iii) center in 13 upon exchange of the BF4 counter-anion with the weakly coordinating sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF).13,23 The phosphorus atom is four-coordinate, with weak bonding observed to the distant counter-anion and a distorted tetrahedral geometry (C1–P–C2 = 95.05(17), C2–P–C3 = 112.1(1), C3–P–C4 = 116.6(1), C4–P–C1 = 107.4(2) deg). These results represent the third example in which the C(sp2)–P bond reductive elimination at gold(iii) has been reported.24Further, it is important to note that, in contrast to the reactivity observed for the pyridine-substituted biphenylene, neither P-coordinated gold(i) iodo complexes 8a, 8b nor 10 reacted to give cyclometalated products despite prolonged heating, which highlights the need for highly reactive cationized gold(i) species to undergo oxidative addition when phosphine ligands are flanking the C–C bond.13To get a deeper understanding on the observed differences in reactivity for the N- vs. P-based directing groups, ground- and transition-state structures for the oxidative insertion of gold(i) halides in C1-substituted biphenylenes were computed by DFT calculations. The reactions of Py-substituted 2 with AuI to give 3 (I) and those of P-substituted 7a (II) and 9 (III) featuring the cationization of the gold(i) species were chosen as models for comparative purposes with the experimental conditions (Fig. 1 and S1–S10 in the ESI).25–27 The computed activation energies for the three processes are in good agreement with the experimental data. The pyridine-substituted biphenylene I exhibits the lowest activation barrier for the oxidative insertion process (ΔG = 34.4 kcal mol−1). The reaction on the phosphine-substituted derivatives II and III proved to be, after cationization of the corresponding gold(i) halide complexes (II-BF4, III-BF4) higher in energy (ΔG = 39.6 and 46.3 kcal mol−1 respectively), although the obtained values do not rule out the feasibility of the C–C activation process. The transition state between I and I′ exhibits several interesting geometrical features: (a) the biphenylene is significantly bent, (b) the cleavage of the C–C bond is well advanced (dC–C = 1.898 Å in TSIvs. dC–C = 1.504 Å in I), and (c) the two C and the I atoms form a Y-shape around gold with minimal coordination from the pyridine (dN–Au = 2.742 Å in TSIvs. dN–Au = 2.093 Å in I and 2.157 Å in I′, respectively). The transition-state structures found for the P-based ligands (TSII and TSIII) also show an elongation of the C–C bond and display a bent biphenylene. However, much shorter P–Au distances (dP–Au = 2.330 Å for TSII and 2.314 Å for TSIII) can be observed compared to the pyridine-based system, as expected due to the steric and electronic differences between these two coordinating groups. Analogously, longer C–Au distances were also found for the P-based systems (dC1–Au = 2.152 Å for TSIvs. 2.235 Å and 2.204 Å for TSII and TSIII; dC2–Au = 2.143 Å for TSIvs. 2.219 Å and 2.162 Å for TSII and TSIII), with a larger deviation of square planarity for Au in TSIII compared to TSII.28,29 These results suggest that, provided the appropriate distance to the C–C bond is in place, the strong coordination of phosphorous to the gold(i) center does not prevent the C–C activation of biphenylene but other reactions (i.e. formation of diphosphine gold(i) cationic species, protodemetalation) can outcompete the expected biscyclometalation process. In contrast, a weaker donor such as pyridine offers a suitable balance bringing the gold in close proximity to the C–C bond and enables both the oxidative cleavage as well as the formation of the double metalation product.Open in a separate windowFig. 1Energy profile (ΔG and ΔG in kcal mol−1), optimized structures, transition states computed at the IEFPCM (toluene/1,2-dichloroethane)-B3PW91/DEF2QZVPP(Au,I)/6-31++G(d,p)(other atoms) level of theory for the C–C activation of biphenylene with gold(i) iodide from I and gold(i) cationic from II and III. Computed structures of the transition states (TSI, TSII and TSIII) and table summarizing relevant distances.  相似文献   

20.
Selective carbon–carbon bond activation is important in chemical industry and fundamental organic synthesis, but remains challenging. In this study, non-polar unstrained Csp2–Csp3 and Csp2–Csp2 bond activation was achieved by B(OMe)3/B2pin2-mediated fragmentation borylation. Various indole derivatives underwent C2-regioselective C–C bond activation to afford two C–B bonds under transition-metal-free conditions. Preliminary mechanistic investigations suggested that C–B bond formation and C–C bond cleavage probably occurred in a concerted process. This new reaction mode will stimulate the development of reactions based on inert C–C bond activation.

Non-polar unstrained Csp2–Csp3 and Csp2–Csp2 bond activation was achieved via B(OMe)3/B2pin2-mediated fragmentation borylation, in which C–C bond activation occurred regioselectively at the C2-position in various substituted indoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号