首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
A sensitive high-performance liquid chromatographic (HPLC) method for the separation and quantitation of phospholipid subclasses and molecular species has been developed. Phospholipids for analysis are hydrolyzed to the diradyl glycerols (DGs) with phospholipase C and the resulting DGs reacted with a molar excess of 1-anthroyl nitrile in the presence of quinuclidine or 4-dimethylaminopyridine to form a stable adduct. The anthroyl-DGs were separated into alkenylacyl, alkylacyl, and diacyl subclasses either by using normal-phase HPLC or by thin-layer chromatography on silica gel G plates. Molecular species within alkenylacyl, alkylacyl, and diacyl subclasses were separated using reversed-phase HPLC. Separation of the individual subclasses was achieved for ethanolamine phosphoglycerides from bovine brain, as well as choline and ethanolamine phosphoglycerides from human neutrophils. Separation and quantitation of individual molecular species were carried out for alkenylacyl, alkylacyl, and diacyl subclasses of bovine brain ethanolamine phosphoglycerides by their absorbance at 254 nm with correction for recoveries as normalized to the internal standard 1,2-dipentadecanoyl-3-phosphatidylcholine added before the hydrolysis of phospholipids with phospholipase C or 1,2-dipentadecanoyl-3-anthroyl glycerol added after complete derivatization. The extinction coefficient of the 1-anthroyl derivatives were greater than 68,000 permitting the generation of concentration-dependent determinations which were linear to less than 1 pmol when monitored at 254 nm. Thus, this procedure provides a new and very sensitive method for the quantitation of picomole quantities of phospholipids or DGs by HPLC techniques.  相似文献   

2.
A new method for the analysis of phospholipids by normal-phase HPLC is described using a silica column. Addition of ammonia and triethylamine to a gradient based on chloroform/methanol/water promoted a good and rapid separation of phospholipid classes (20 min run). The use of an evaporative light scattering detector permitted an accurate analysis of a mixture of phospholipids. Calibration curves were linear within different range for each phospholipid class. The LOD and LOQ obtained were below 0.03 and 0.05 mg kg−1 for all cases, respectively. Besides, a new method for the separation of phospholipids from total lipids before HPLC analysis by a solid-phase extraction (SPE) with Si cartridges has been developed. This methodology gave a good recovery ranging from 97 to 117%. The method was validated with a standard mixture of phospholipids. This method has been applied to characterize the phospholipid fraction of subcutaneous fat from Iberian pig. Cardiolipin, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylcholine, and sphingomyelin have been described for first time in these samples. The fatty acid composition of the different phospholipid classes and their HPLC electrospray ionization mass spectrometry have been used for characterizing the molecular species present in each one.  相似文献   

3.
A new phospholipid‐specific spray reagent is described. A new phospholipid‐specific spray reagent, which is a modification of the Dittmer–Lester reagent, is described in authors' studies. The difference between these two reagents is in the addition of tin (II) chloride to the proposed spray reagent. The use of the described spray reagent together with an image analysis technique allows not only for qualitative, but also for quantitative, determination of major phospholipid classes. Separation of phosphatidylserine (PS), phosphatidylethanolamine (PE) and phosphatidylcholine (PC) was conducted on an HPTLC plate with a mixture of chloroform, methanol and 25% ammonia solution in a volume ratio of 65:25:4 as mobile phase. The calibration curves were linear in the ranges of 5.0–25.0, 1.5–15.0 and 1.0–20.0 µg/spot for PC, PS and PE, respectively. The use of the new spray reagent resulted also in lower limits of detection than the standard molybdenum method for the investigated phospholipids. The proposed method was used to determine the amount of PS in the dietary supplement ‘Session’, and of PS, PE and PC in biological samples, with good results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Gao F  Zhang Z  Fu X  Li W  Wang T  Liu H 《Electrophoresis》2007,28(9):1418-1425
A hyphenated method of nonaqueous capillary electrophoresis coupled to electrospray ionization mass spectrometry (NACE-ESI-MS) is described for the simultaneous analysis of phospholipids. The best results were obtained with a mixed solution of methanol/ACN (40:60 v/v) containing 20 mM ammonium acetate and 0.5% acetic acid, under the applied voltage of 30 kV and capillary temperature of 25 degrees C. ESI-MS measurements were performed in the negative mode with methanol/ACN (40:60 v/v) containing 50 mM ammonium acetate as sheath liquid at a flow rate of 2 microL/min. Different phospholipid classes have been successfully separated within 16 min, and the molecular species of every single class have been identified by using MS(2) or MS(3), which generates characteristic fragments through CID. The developed method has been applied to analyze the phospholipids extracted from rat peritoneal surface and the molecular species of phospholipid classes are presented.  相似文献   

5.
A liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method using reversed-phase chromatography was developed for the analysis of phospholipids from bacterial extracts of a wild-type strain of Escherichia coli. Product ion mass spectra from [M--H](-) precursor ions allowed an identification of individual phospholipid species that includes both fatty acid composition and fatty acyl location on the glycerol backbone using diagnostic product ions. Thus, complete assignment, including sn-1/sn-2 fatty acyl position, was achieved for this strain of E. coli. In addition, the phospholipids were quantified relative to one another using an internal standard method.  相似文献   

6.
Lima LR  Synovec RE 《Talanta》1994,41(4):581-588
Molecular species of phosphatidylcholine, phosphatidylethanolamine and phosphatadic acid were resolved by isocratic reversed phase high performance liquid chromatography (HPLC) using mobile phases of methanol-isopropanol containing para-toluenesulfonic acid (p-tsa). Separation by both non-polar fatty acid chain length and by polar head group functionality was achieved concurrently upon a commercially available octadecylsilane (C18) column endcapped with trimethylsilane (C1) groups. Using a mobile phase of 97.5:2.5 methanol:isopropanol with 7OmMpara-toluenesulfonic acid (p-tsa) at a pH of approximately 1, twelve phospholipid species comprised of four tail group classes (dilauroyl-,dimyristoyl-, dipamitoyl- and distearoyl-) and three head group speciations (phosphatidylcholine, phosphatidylethanolamine and phosphatadic acid) were separated. The column was then exposed to the acidic mobile phase for 48 hours continuously during which the bound phase underwent severe acid-induced hydrolysis, after which the separation of the twelve analytes resulted in the separation of the phospholipid species by non-polar tail group alone. The experimental results are discussed in terms of potential separation mechanisms including dependency of the separation on adsorption of the counter ion into the stationary phase, residual acidic silanol group interactions, and potential interactions of the surface active phospholipids with C1 groups.  相似文献   

7.
A phospholipid mixture extracted from cultured cells was directly analyzed by capillary (Cap) liquid chromatography (LC)/electrospray ionization (ESI) mass spectrometry (MS). Using a quadrupole mass spectrometer, we analyzed positive molecular ions, negative molecular ions, positive fragment ions and negative fragment ions under four different functions. In the analysis of the elution patterns of the phospholipids, a two-dimensional map, in which the first dimension is elution time and the second dimension is mass, proved useful. Consequently, four different maps can be obtained by each of four different functions. Among them, from negative fragment ions at high cone voltage in the negative ion mode, ions that originated from acyl fatty acid and phosphorylcholine, phosphorylethanolamine and cyclic inositol phosphate can be detected at specific elution times. The map from positive fragment ions at high cone voltage in the positive ion mode indicated ions such as diradylglycerol and derivatives of 1-alkyl or 1-alkenyl cyclic phosphatidic acid from phosphatidylethanolamine (PE), and phosphorylcholine from choline-containing phospholipids. The map produced from positive molecular ions indicated choline-containing phospholipids such as phosphatidylcholine, sphingomyelin, lysophosphatidylcholine and PE. The map of negative molecular ions effectively indicated acidic phospholipids such as phosphatidylinositol. We were able to obtain more than 500 molecular species of phospholipids by this method within a few hours immediately after extraction from culture cells using a mixture of chloroform and methanol (2:1). In this context, we concluded that the combination of Cap-LC and ESIMS seems to be very effective in the analysis of phospholipid classes and their molecular species.  相似文献   

8.
Zhang L  Hu S  Cook L  Dovichi NJ 《Electrophoresis》2002,23(17):3071-3077
Micellar electrokinetic capillary chromatography (MEKC) with laser-induced fluorescence detection is used for the analysis of three classes of aminophospholipids: phosphatidylethanolamine (PE), phosphatidylserine (PS), and lysophosphatidylethanolamine (LPE) molecular species. 3-(2-Furoyl) quinoline-2-carboxaldehyde (FQ), a fluorogenic dye, was employed for labeling of these phospholipids. The FQ-labeled lipid species were then separated by sodium deoxycholate MEKC modified with methyl-beta-cyclodextrin. Baseline resolution of each class of phospholipids was achieved within 7 min. The migration time in each class increased with the carbon number of their side aliphatic chain. Separation efficiencies of approximately 3x10(5) plates were observed for most of these species. Concentration detection limits (3 sigma) were from 10(-9) to 10(-10) M for PE and LPE species and from 10(-8) to 10(-9) M for PS species. The relative standard deviations for migration time and peak area were less than 0.9% and 4.5%, respectively, for seven PE species. This method was applied to the separation of PE isolated from HT29 human colon cancer cells and roughly 30 PE species were resolved.  相似文献   

9.
The quantification of phospholipid classes and the determination of their molecular structures are crucial in physiological and medical studies. This paper's target analytes are cell membrane phospholipids, which play an important role in the seasonal acclimation processes of poikilothermic organisms. We introduce a set of simple and cost‐effective analytical methods that enable efficient characterization and quantification of particular phospholipid classes and the identification and relative distribution of the individual phospholipid species. The analytical approach involves solid‐phase extraction and high‐performance thin‐layer chromatography, which facilitate the separation of particular lipid classes. The obtained fractions are further transesterified to fatty acid methyl esters and subjected to gas chromatography coupled to flame ionization detection, which enables the determination of the position of double bonds. Phospholipid species separation is achieved by high‐performance liquid chromatography with mass spectrometry, which gives information about the headgroup moiety and attached fatty acids. The total content of each phospholipids class is assessed by phosphorus determination by UV spectrophotometry. The simultaneous analysis of phosphorus, fatty acid residues, and phospholipid species provides detailed information about phospholipid composition. Evaluation of these coupled methods was achieved by application to an insect model, Pyrrhocoris apterus. High correlation was observed between fatty acid compositions as determined by gas chromatography and high‐performance liquid chromatography analysis.  相似文献   

10.
One of the major challenges in lipidomics is to obtain as much information about the lipidome as possible. Here, we present a simple yet universal high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) method to separate molecular species of all phospholipid classes in one single run. The method is sensitive, robust and allows lipid profiling using full scan mass spectrometry, as well as lipid class specific scanning in positive and negative ionisation mode. This allows high-throughput processing of samples for lipidomics, even if different types of MS analysis are required. Excellent separation of isobaric and even isomeric species is achieved, and original levels of lyso-lipids can be determined without interference from lyso-lipids formed from diacyl species by source fragmentation. As examples of application of this method, more than 400 phospholipid species were identified and quantified in crude phospholipid extracts from rat liver and the parasitic helminth Schistosoma mansoni.  相似文献   

11.
A method for the simultaneous determination of amounts of major phospholipid classes and their fatty acid composition in erythrocyte membranes is described. The method consists in extraction of phospholipids from erythrocyte membranes, separation of phospholipid classes by high-performance liquid chromatography, methylation of phospholipids and determination of phospholipid-bound fatty acids by capillary gas chromatography. The amounts of phospholipid classes are calculated from the total weight of phospholipid-bound fatty acids and their average molecular weights. The method was applied to erythrocytes from rats. The results show that the method is reproducible and is useful for the determination of amounts of phospholipid classes and their fatty acid composition in small blood samples.  相似文献   

12.
Leishmaniasis is a widespread parasitic disease principally treated by intravenous drugs. Hexadecylphosphocholine (miltefosine) has recently proved its efficacy by oral route. Although its mechanism of action has been investigated, and principally relies on perturbations of the metabolism of lipids and especially phospholipids, further studies need to be conducted to detect precisely which metabolic pathways are impacted. For this purpose, the present work proposes a complete lipidomic study focused on membrane phospholipids of clones of Leishmania donovani non-treated (NT), treated (T) and resistant (R) to miltefosine. Firstly, a separation of phospholipids in normal phase high-performance liquid chromatography (NP-HPLC) was coupled to a mass spectrometer (MS) equipped with an electrospray (ESI) ion source, and response was compared to evaporative light scattering detection (ELSD). Secondly, a quantification of phospholipid classes was performed using NP-HPLC/ESI/MS on NT, T and R clones of L. donovani. Thirdly, full-scan acquisitions of analyzed samples were compared using orthogonal signal correction-partial least square-discriminant analysis (OSC-PLS-DA) to highlight phospholipid molecular species of interest between the three types of clones. Structural determination of the most relevant species has finally been performed using tandem mass spectrometry. A first hypothesis on the effect of miltefosine on lipid metabolic pathways is then proposed.  相似文献   

13.
超临界流体色谱法分析大豆磷脂   总被引:9,自引:0,他引:9  
王学军  赵锁奇  王仁安 《色谱》2001,19(4):344-346
 采用以CO2 为流动相的超临界流体色谱方法 ,以含 0 0 5 % (体积分数 )三乙胺的乙醇作为改性剂 ,对具有重要生物功能的大豆磷脂组成进行分析 ,获得了大豆磷脂提取物中 6个重要组分的定性结果 ,并讨论了流动相组成、操作温度和压力对分离的影响。对其中有代表意义的磷脂酰胆碱 (PC)进行了外标法定量分析 ,在PC质量浓度为0 0 2 0 g/L~ 0 0 75 g/L时具有较好的线性关系 ,PC加样回收率为 96 7% (n =5 ) ,重现性好。此方法可用于实际样品的分析。  相似文献   

14.
An improved HPLC procedure for the separation of phospholipids is described. The method described utilizes a solvent mixture of acetonitrile-methanol–water-trifluoroacetic acid (100:25:1.7:2.5, v/v) as the mobile phase, which is more compatible with the pump than mobile phases containing inorganic acids. Separation was by isocratic elution on a Hypersil silica column coupled to an evaporative light scattering detector. Complete separation of phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylcholine (PC) and sphingomyelin (SM) was achieved in less than 20 min. The detection limits for PS, PE, PC and SM were 50, 50, 80 and 150 ng (S/N = 3), respectively. Human, bovine and porcine erythrocyte ghost membranes and animal tissues have been successfully analyzed for their phospholipid contents.  相似文献   

15.
对3种极性头不同的磷脂DMPG、DMPC、DMPE的液相二次离子质谱分析中出现 的分子离子簇现象进行了系统的研究。结果表明,虽然分子离子簇的形成与许多因素有关, 如PH值、离子强度等,但起决定作用的是样品在底物中的浓度,浓度增大有利于分子离子簇 的形成。研究还发现,由不同种类磷脂分子形成的分子离子簇峰明显高于由同种磷脂分子所 形成的分子离子簇峰,指出异种磷脂分子间的簇离子形成能力高于同种磷脂分子。此外还讨 论了磷脂分子在离子源条件下的稳定性、裂解规律及相互作用等。结果表明,本实验所选用 的磷脂分子在LSIMS条件下是稳定的,均能得到较强的分子离子峰,其主要碎片峰是磷酰键断裂而产生的碎片离子峰。  相似文献   

16.
A fast reversed-phase liquid chromatography-electrospray ionization triple quadrupole mass spectrometry method was developed for the molecular species profiling of glycerophosphocholine (GPC) and sphingomyelin (SM) in total lipid extracts. A two-stage mass spectrometry strategy was adopted to analyze in detail the composition of lipid molecular species. Precursor ion analysis was first conducted to obtain the preliminary composition profile of the phosphorylcholine-containing lipid. The product ion spectra were sequentially acquired for each recorded signal to determine the molecular structure of the lipid. A total of 150 GPCs and 12 SMs were identified in the fetal mouse lung with relative amounts ranging from 13.7?% to less than 0.002?% (normalizing by the total signal response). A column packed with core–shell particles was used to obtain excellent chromatographic separation with a shorter time demand in a conventional high-performance liquid chromatography system. Considering the compromise between the chromatographic efficiency and the electrospray signal response, the optimization of the mobile phase improves the chromatographic plate number to approximately 40,000 and the detection limits to less than 0.001?mg/L. The applicability of the method was validated through a study of chemically induced early lung maturation. The metabolic alteration in the fetal mouse lung was clearly reflected in the GPC and SM composition with several characteristics of the molecular structure that related to the character of the phospholipid layer upon the epithelial lining of alveoli and the relevant cell function. The results indicated that this analytical strategy is reliable for comprehensive molecular species profiling of GPC and SM and might be extended to the analysis of other phospholipids.
Figure
Glycerophosphocholine and sphingomyelin molecular species profiling using a fast HPLC/QqQ-MS method adopting a two-stage mass spectrometry strategy composed of preliminary phosphorylcholine-containing lipid profiling and sequential lipid molecular structure determination  相似文献   

17.
Liquid chromatography coupled to tandem mass spectrometry has been compared to shotgun analysis with the objective of finding the best compromise for a single run analysis of whole cell phospholipids. Hydrophilic interaction liquid chromatography (HILIC), normal phase (NP), and reversed phase (RP) liquid chromatography were evaluated with reference phospholipids belonging to phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), and phosphatidylserine (PS) classes. NP-HPLC- and RP-HPLC-ESI-MS/MS were applied to yeast phospholipidome analysis, using a wild-type strain and two strains defective for acyltransferases that are known to be involved in de novo phospholipid synthesis or phospholipid remodeling. The MRM mode was used for relative quantitation of individual compounds based on reference phospholipids bearing fatty acid chains with an odd number of carbon atoms. Combined LC-MS/MS was found superior to shotgun analysis, leading to a larger number of quantified species than shotgun analysis. Finally, RP-HPLC-MS/MS was the preferred method for its higher selectivity, robustness, and better repeatability.  相似文献   

18.
Direct-injection electrospray ionization mass spectrometry in combination with information-dependent data acquisition (IDA), using a triple-quadrupole/linear ion trap combination, allows high-throughput qualitative analysis of complex phospholipid species from child whole blood. In the IDA experiments, scans to detect specific head groups (precursor ion or neutral loss scans) were used as survey scans to detect phospholipid classes. An enhanced resolution scan was then used to confirm the mass assignments, and the enhanced product ion scan was implemented as a dependent scan to determine the composition of each phospholipid class. These survey and dependent scans were performed sequentially and repeated for the entire duration of analysis, thus providing the maximum information from a single injection. In this way, 50 different phospholipids belonging to the phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylcholine and sphingomyelin classes were identified in child whole blood.  相似文献   

19.
Postaire E  Hamon M  Sponton E  Pradeau D 《Talanta》1985,32(3):227-229
A method using reversed-phase high-pressure liquid chromatography (with spectrometric detection at 218nm) is described for the determination in new pharmaceutical preparations (liposomes) of a new immunostimulating agent (N-acetylmuramoyl-l-alanyl-d-isoglutamine). Separation was achieved with a mu-bondapak column and phosphate buffer (pH 2.5)-methanol mixture (93:7 v/v) as eluent, at a flow-rate of 2 ml min . Sodium acetate was used as an internal standard. The detector response at 218 nm was linear in the range 10-170 mug ml . The method is simple and accurate.  相似文献   

20.
Although marine oysters contain abundant amounts of ether-linked aminophospholipids, the structural identification of the various molecular species has not been reported. We developed a normal-phase silica liquid chromatography/negative-ion electrospray ionization/quadrupole multiple-stage linear ion-trap mass spectrometric (NPLC-NI-ESI/Q-TRAP-MS3) method for the structural elucidation of ether molecular species of serine and ethanolamine phospholipids from marine oysters. The major advantages of the approach are (i) to avoid incorrect selection of isobaric precursor ions derived from different phospholipid classes in a lipid mixture, and to generate informative and clear MSn product ion mass spectra of the species for the identification of the sn-1 plasmanyl or plasmenyl linkages, and (ii) to increase precursor ion intensities by “concentrating” lipid molecules of each phospholipid class for further structural determination of minor molecular species. Employing a combination of NPLC-NI-ESI/MS3 and NPLC-NI-ESI/MS2, we elucidated, for the first time, the chemical structures of docosahexaenoyl and eicosapentaenoyl plasmenyl phosphatidylserine (PS) species and differentiated up to six isobaric species of diacyl/alkylacyl/alkenylacyl phosphatidylethanolamine (PE) in the US pacific oysters. The presence of a high content of both omega-3 plasmenyl PS/plasmenyl PE species and multiple isobaric molecular species isomers is the noteworthy characteristic of the marine oyster. The simple and robust NPLC-NI-ESI/MSn-based methodology should be particularly valuable in the detailed characterization of marine lipid dietary supplements with respect to omega-3 aminophospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号