首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
A flow injection analysis-flame atomic absorption spectrometric method for the determination of cadmium in seawater was developed with the aim of yielding a sensitive assay with a low detection limit. The method employs a field flow preconcentration technique involving a minicolumn containing Amberlite XAD-4 impregnated with the complexing agent 4-(2-pyridylazo) resorcinol. A Plackett-Burman 2(7)x3/32 design for seven factors (sample pH, sample flow rate, eluent volume, eluent concentration, eluent flow rate, ethanol percentage in the eluent and minicolumn diameter) was carried out in order to find the significant variables affecting the field continuous preconcentration system (FCPS) and the flow injection elution manifold for cadmium determination in seawater samples by flame atomic absorption spectrometry. Cadmium can be preconcentrated with an enrichment factor of 1053 for a sample volume of 200 mL and a preconcentration time of 57 min. In these experimental conditions, the method provides a linear relationship between absorbance and cadmium concentration in the range from 22-1900 ng L(-1), with a detection limit (3SD) of 6 ng L(-1). The precision (expressed as relative standard deviation) for eleven independent determinations reached values of 8.9-0.8% in cadmium solutions of 50-700 ng L(-1). Analysis of certified reference materials (SLEW-3 and NASS-5) showed good agreement with the certified value. This procedure was applied to the determination of cadmium in seawater from Galicia (Spain).  相似文献   

2.
A simple field sampling-preconcentration method for zinc determination in seawater is described. Seawater was collected in situ by pumping it through a minicolumn packed with a chelating resin (Chelite P) connected to a field flow preconcentration system (FFPS). These packed minicolumns retain the dissolved zinc, and once are loaded with the analyte, they are returned to the laboratory where they are sequentially inserted into a flow injection system for on-line zinc elution with diluted hydrochloric acid and flame atomic absorption spectrometric detection. A factorial design has been used to optimize the FFPS and the flow injection elution process. The proposed method has a linear calibration range from 0.07 to at least 9.4 microg L(-1) of zinc, with a detection limit of 0.02 microg L(-1) and a throughput of 26 samples h(-1). Validation was carried out against certified reference water samples. This procedure has been successfully applied to the determination of Zn in seawater samples from Galicia (Spain).  相似文献   

3.
A field flow preconcentration system for copper determination in seawater is described. Seawater samples are collected and preconcentrated in situ by passing them using a peristaltic pump through a minicolumn packed with Amberlite XAD-4 impregnated with the complexing agent 1-(2-pyridylazo)-2-naphthol. Thus, copper is preconcentrated without the interference of the saline matrix. Once in the laboratory, the minicolumns loaded with copper are incorporated on a flow injection system and eluted with a small volume of a 20% (v/v) ethanolic solution of 0.5 mol L-1 hydrochloric acid into the nebuliser-burner system of a flame atomic absorption spectrometer. The analytical figures of merit for the determination of copper are as follows: detection limit (3s), 0.06 microgram L-1; precision (RSD), 1.2% for 2 micrograms L-1; enrichment factor, 30 (using 25 mL of sample and 83 microL of eluent). Analysis of certified reference materials (SLEW-3 and NASS-5) showed good agreement with the certified value. This procedure was applied to the determination of copper in seawater samples from Galicia (Spain).  相似文献   

4.
A Plackett–Burman 27×3/32 design for seven factors (sample pH, sample flow rate, eluent volume, eluent concentration, eluent flow rate, ethanol percentage in the eluent and mini-column diameter) was carried out in order to find the significant variables affecting the field flow pre-concentration system (FFPS) and the flow injection elution manifold for copper determination in seawater samples by flame atomic absorption spectrometry. By using the optimized flow systems, seawater samples were collected and pre-concentrated in situ by passing them with a peristaltic pump through a mini-column packed with Amberlite XAD-4 impregnated with the complexing agent 4-(2-pyridylazo) resorcinol. Thus, copper is pre-concentrated without the interference of the saline matrix. Once in the laboratory, the mini-columns loaded with copper are incorporated into a flow injection system and eluted with a small volume of a 40% (v/v) ethanolic solution of 3 mol l−1 hydrochloric acid into the nebulizer-burner system of a flame atomic absorption spectrometer. Analysis of certified reference materials (SLEW-3 and NASS-5) showed good agreement with the certified value.  相似文献   

5.
Yebra MC  Enríquez MF  Cespón RM 《Talanta》2000,52(4):631-636
A rapid, sensitive, accurate and precise flame atomic absorption method is described for the determination of cadmium in mussels. The method is based on the continuous precipitation of cadmium as an ion pair between tetraiodocadmate and quinine and dissolution of the precipitate with ethanol. The metal can be preconcentrated 32-fold using 15 ml of sample solution by using a time-based technique at a sampling flow rate of 3.0 ml min(-1). The proposed method allows the determination of cadmium in the range 0.25-5.5 mug g(-1). The precision (relative standard deviation) obtained for different amounts of cadmium is in the range 1.5-4.7% at the 0.25-5.0 mug g(-1) level. The method demonstrates high tolerance to interferences, and the data obtained are in agreement with the certified value of a selected reference material. This procedure was applied to the determination of cadmium in mussel samples from estuaries in Galicia (Spain).  相似文献   

6.
A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min(-1), elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L(-1) using ETAAS and 12, 122, 3.4, 17, and 21 ng L(-1) using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-microg L(-1) concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater).  相似文献   

7.
Kara D  Fisher A  Hill SJ 《The Analyst》2005,130(11):1518-1523
An on-line flow injection method for the direct determination of trace elements in environmental samples is described. A mini-column packed with 2,6-diacetylpyridine functionalized Amberlite XAD-4 was used to preconcentrate and separate 8 trace metals (Cd, Co, Cu, Mn, Ni, Pb, U and Zn) from water and extracts from solid samples. The metals were eluted with 0.1 M HNO(3) directly to the detection system (either inductively coupled plasma-mass spectrometry (ICP-MS) or flame atomic absorption spectrometry (FAAS)). As well as demonstrating that the resin could be used to preconcentrate ultra-trace analytes from natural waters, it was also shown to work well at a pH of 5.5. Therefore, after treatment of sample digests with sodium fluoride, samples that contain extremely large concentrations of iron may be analysed for trace analytes without the excess iron overloading the capacity of the resin. To this end, the analytes Cd, Co, Cu and Ni were preconcentrated from acid extracts of certified soil/sediment samples and then eluted with nitric acid to be determined on-line. Limits of detection (3sigma) of Cd = 0.33 microg l(-1), Co = 0.094 microg l(-1), Cu = 0.34 microg l(-1), Mn = 0.32 microg l(-1), Ni = 0.30 microg l(-1), Pb = 0.43 microg l(-1), U = 0.067 microg l(-1) and Zn = 0.20 microg l(-1) for the FI-ICP-MS system and Cd = 22 microg l(-1), Co = 60 microg l(-1), Cu = 10 microg l(-1) and Ni = 4.8 microg l(-1) for the FI-FAAS system were obtained. Analysis of certified reference materials showed good agreement with the certified values using the two methods.  相似文献   

8.
A flow-injection system with a Chelite-S(R) cationic resin packed minicolumn is proposed for the determination of trace levels of mercury in agroindustrial samples by cold vapor atomic absorption spectrometry. Improved sensitivity and selectivity are attained since mercuric ions are on-line concentrated whereas other potential interferents are discarded. With on-line reductive elution procedure, concentrated hydrochloric acid could be replaced by 10% w/v SnCl(2), in 6 M HCl as eluent. The reversed-intermittent stream either carries the atomic mercury to the flow cell in the forward direction or removes the residue from reactor/gas-liquid separator to a discarding flask in the opposite direction. Concentration and volume of reagent, acidity, flow rates, commutation times and potential interfering species were investigated. For 120 s preconcentration time, the proposed system handles about 25 samples h(-1) (50.0-500 ng l(-1)), consuming about 10 ml sample and 5 mg SnCl(2) per determination. The detection limit is 0.8 ng l(-1) and the relative standard deviation (RSD) (n=12) of a 76.7 ng l(-1) sample is about 5%. Results are in agreement with certified value of standard materials at 95% confidence level and good recoveries (97-128%) of spiked samples were found.  相似文献   

9.
An automatic method for determining diuron, irgarol 1051, folpet and dichlofluanid in seawater samples have been developed. This method is based on the on-line coupling of solid-phase extraction (SPE) with a highly crosslinked polymeric sorbent, LiChrolut EN, to liquid chromatography followed by atmospheric pressure chemical ionization (APCI) and mass spectrometry. The operational parameters affecting the APCI interface have been studied in both positive and negative ionization modes. The use of LiChrolut EN in the SPE produced recoveries of over 85% for all the compounds when 100 ml of seawater sample was preconcentrated. Calibration was carried out in both ionization modes and in full-scan and selected-ion monitoring (SIM). The method allowed all the analytes to be detected at 5 ng l(-1) in SIM acquisition mode except folpet, which, because of its low response, could only be detected at 250 ng l(-1). The method was used to analyse water samples taken from five different marina and fishing ports along the coast of Tarragona, Catalonia (Spain), over a 5-month period. Diuron and irgarol 1051 were detected and quantified in most samples at concentration levels ranging from 27 to 420 ng l(-1) for diuron and from 15 to 511 ng l(-1) for irgarol 1051.  相似文献   

10.
Chan MS  Huang SD 《Talanta》2000,51(2):373-380
Methods for the direct determination of copper and cadmium in seawater were described using a graphite furnace atomic absorption spectrometer (GFAAS) equipped with a transversely heated graphite atomizer (THGA) and a longitudinal Zeeman effect background corrector. Ammonium nitrate was used as the chemical modifier to determine copper. The mixture of di-ammonium hydrogen phosphate and ammonium nitrate was used as the chemical modifier to determine cadmium. The matrix interference was removed completely so that a simple calibration curve method could be applied. This work is the first one with the capability of determining cadmium in unpolluted seawater directly with GFAAS using calibration curve based on simple aqueous standards. The accuracy of the methods was confirmed by analysis of three kinds of certified reference saline waters. The detection limits (LODs), with injection of a 20-mul aliquot of seawater sample, were 0.06 mug l(-1) for copper and 0.005 mug l(-1) for cadmium.  相似文献   

11.
Two flow injection inductively coupled plasma atomic emission spectrometric methods for the preconcentration and determination of trace amounts of cadmium in sea-water and waste-water samples are described based on the adsorption of the metal ion on a micro-column placed in the injection valve of the FI manifold and packed with silica gel funtionalised with 1,5-bis(di-2-pyridyl) methylene thiocarbohydrazide (DPTH-gel) and silica gel functionalised with methylthiosalicylate (TS-gel), respectively. Various parameters and chemical variables affecting the preconcentration and determination of this metal by ICP-AES are evaluated. The DPTH-gel preconcentration method has a linear calibration range from 5 to at least 100 ng ml(-1) of cadmium, with a R.S.D. of 1.1% for ten independent analyses of 100 ng ml(-1), a detection limit of 1.1 ng ml(-1) and a throughput of 40 samples per hour using a 60 s preconcentration time. The TS-gel preconcentration method shows a linear range between 10 and 100 ng ml(-1), with a R.S.D. of 2.5% for ten independent analyses of 100 ng ml(-1), a detection limit of 4.3 ng ml(-1) and a sample throughput of 24 samples per hour for a preconcentration time of 120 s. Validation was carried out against a certified reference water sample and by determining the analyte content in spiked synthetic sea-water, sea-water and waste-water.  相似文献   

12.
The electrodeposition of cadmium and copper on a special graphite disk electrode has been performed at controlled potential. The electrode with the deposit has been inserted into the graphite atomizer HGA-400 by an adapted automatic sampler for the final determination by ET-ASS. The sensitivity of determination has been 0.371 (microg l(-1))(-1) for cadmium and 0.025 (microg l(-1))(-1) for copper for 2 min electrodeposition and increased linearly with the time of deposition. The limit of detection (3s(bl)) has been 7.9 ng l(-1) Cd(2+) and 0.11 microg l(-1) Cu(2+) for 2 min deposition and it has been improved with increased time of electrodeposition. The technique has been applied to the determination of both metals in seawater and to speciation in the presence of EDTA complexing agent.  相似文献   

13.
A large-volume (100 microl) injection-ETAAS with W-treated PG furnace combined with a phosphate modifier was applied to the determination of unpolluted levels of Cd in tap, snow and river-water samples. The limit of detection of 1.1 ng l(-1) was observed for a 4 w/v% NH4H2PO4 modifer. Matrix interference studies were tested for major ion species well found in fresh water. The direct determination of Cd in certified river water (12 +/- 2 ng l(-1)) was carried out and the observed value was in agreement with the certified one. The good recoveries of Cd added to real environmental water samples were also observed. This method was applied to the determination of Cd in unpolluted environmental water samples.  相似文献   

14.
Norisuye K  Hasegawa H  Mito S  Sohrin Y  Matsui M 《Talanta》2000,53(3):639-644
A method for preconcentrating Zr from large volumes of seawater using MnO(2)-impregnated fibers is described. The manganese dioxide-impregnated fibers were synthesized from polypropylene cartridge filters by a redox reaction between KMnO(4) and MnCl(2). Seawater samples were introduced into an extraction system and Zr was extracted from the samples by the MnO(2)-impregnated fibers. Zirconium was recovered from the fibers through two steps of elution into aqueous solutions and measured by inductively coupled argon plasma atomic emission spectrometry. The average extraction efficiency for Zr was 59% on a single pass of 50-1000 l sample at flow rates of 8.1-15 l min(-1), and 100% on continuous circulation of 200 l sample at 15 l min(-1). The results indicate that Zr can be rapidly and easily preconcentrated onto MnO(2)-impregnated fibers from large volumes of seawater. This simple method can be applied to the preconcentration of trace dissolved Zr in natural water and removal of radiozirconium from radioactive waste fluid.  相似文献   

15.
A new sensitive and low cost method for cadmium determination at microg l(-1) levels that combines an on-line preconcentration system with the thermospray flame furnace atomic absorption spectrometry technique (TS-FF-AAS) is described in this work. Cadmium is preconcentrated from an acidic medium (pH 2.0) by forming a complex with ammonium O,O-diethyldithiophosphate (DDTP), which is then adsorbed onto polyurethane foam (PUF). The elution step is performed by using 80% (v/v) ethanol. The effects of the chemical and flow variables associated with the preconcentration were studied, such as the pH of formation of the Cd-DDTP complex, the DDTP concentration, the preconcentration and elution flow rate and the mass of adsorbent. The present method was operated in volume-mode (2 ml) and provided a linear range from 0.4 to 15.0 microg l(-1) with a sample throughput of 16 h(-1). The increase of power detection related to TS-FF-AAS by coupling the preconcentration system was confirmed by the enhancement of sensitivity (ca. 5 times), when compared to the value for TS-FF-AAS alone, thus achieving a low detection limit (0.12 microg l(-1)). The accuracy of the method was confirmed from analyses of spiked water samples and by the use of a reference technique (ETAAS). Certified biological materials were also used for the same purpose.  相似文献   

16.
A rapid and sensitive time-based flow injection (FI) method for on-line preconcentration and determination of lead by flame atomic absorption spectrometry (FAAS), using polytetrafluoroethylene (PTFE) turnings as packing material in a micro-column, has been developed. The sample was mixed on-line with ammonium pyrrolidine dithiocarbamate (APDC) and the non-charged Pb(II)-PDC complex was absorbed quantitatively on the hydrophobic PTFE material, at a pH range 1.4-3.2. The preconcentrated complex was effectively eluted with isobutyl methyl ketone (IBMK) and introduced into the nebulizer-burner system. A nested coil (NC) is proposed for parking the eluate temporarily, in order to enable different elution and nebulization flow rates. With 180 s preconcentration time the sample frequency was 15 h(-1), and the enhancement factor was 330 at 13.0 ml min(-1) sample flow rate. The detection limit was c(L)=0.8 mug l(-1), the relative standard deviation (R.S.D.) 2.6% at the 30 mug l(-1) level and the calibration curve was linear over the concentration range 1.6-100 mug l(-1). The proposed method was evaluated by analyzing certified reference materials of water, sediments and fish tissue. Finally, it was applied successfully to the analysis of various environmental samples.  相似文献   

17.
A versatile preconcentration system for trace element determination by ICPMS was developed. It is composed of a commercial flow injection analysis system (FIAS) retrofitted with a home-made control unit containing three solenoid valves and working concomitantly with the FIAS, permitting selection and segmentation of sample, reagent, washing solution and elution flow. The knotted reactor used had a length of 200 cm and was made from 0.05 cm i.d. PTFE tubing. The method applies ammonium 1-pyrrolidinedithiocarbamate (APDC) as complexant, allowing the preconcentration and quantitative multi-element determination of Cu, Ni, V, Co, Nb, Mo, In, Sb and Bi. Ethanol and 4-methyl-2-pentanone were tested as eluents. Recovery tests using complex matrices and spike concentrations of 200 ng L(-1) showed typical values in the range of 90% to 110%. Relative standard deviations were < 7% for elution with ethanol and < 5% with methyl isobutyl ketone. For simulated freshwater samples using 4-methyl-2-pentanone as an eluent, a sample loading rate of 5.0 ml min(-1), and a preconcentration time of 60 s, detection limits (ng L(-1)) were in the range of 0.02 (Bi) to 30 (Cu). Under these conditions, analytical frequency was about 15 samples per hour. The feasibility of the method was demonstrated by the succesful analysis of wastewater and seawater certified reference materials.  相似文献   

18.
A computer-controlled flow injection system was developed for the determination of cadmium in a hydrometallurgical zinc refining process stream. An anion-exchange method in acidic potassium iodide medium was used for the on-line separation of cadmium from the matrix zinc. 1-(4-Nitrophenyl)-3-(4-phenylazophenyl)triazene (Cadion) was used as the chromogenic reagent for the spectrophotometric detection of cadmium. In order to expand the dynamic range of the flow injection - spectrophotometry, a computer-aided time-based variable-volume injection method has been employed for the introduction of the sample into the flow injection system. Samples ranging from 0.56 to 350 microl can be delivered by controlling the time period of the sample introduction valve and the flow rate of the carrier solution. The system permits a throughput of 5 samples per hour. The reproducibility has been proven to be satisfactory with a relative standard deviation of less than 6.2% (sample injected: 0.56 microl of 850 microg Cd/ml; n=100) and 5.0% (350 microl of 0.14 microg Cd/ml; n=5). The determination limit was 20 microg Cd/ml with 0.56 microl sample injection and 0.05 microg Cd/ml with 350 microl sample injection (the absolute amount of cadmium injected into the system was 11 ng and 17.5 ng, respectively).  相似文献   

19.
Sun YC  Mierzwa J  Lan CR 《Talanta》2000,52(3):417-424
A reliable and very sensitive procedure for the determination of trace levels of molybdenum in seawater is proposed. The complex of molybdenum with 8-hydroxyquinoline (Oxine) is analyzed by cathodic stripping square-wave voltammetry based on the adsorption collection onto a hanging mercury drop electrode (HMDE). This procedure of molybdenum determination was found to be more favorable than differential pulse cathodic stripping voltammetry because of inherently faster scan rate and much better linearity obtained through the one-peak (instead of one-of-two peaks) calibration. The variation of polarographic peak and peak current with a pH, adsorption time, adsorption potential, and some instrumental parameters such as scan rate and pulse height were optimized. The alteration of polarographic wave and its likely mechanism are also discussed. The relationship between peak current and molybdenum concentration is linear up to 150 mug l(-1). Under the optimal analytical conditions, the determination limit of 0.5 mug l(-1) Mo was reached after 60 s of the stirred collection. The estimated detection limit is better than 0.1 mug l(-1) of Mo. The applicability of this method to analysis of seawater was assessed by the determination of molybdenum in two certified reference seawater samples (CASS-2 and NASS-2) and the comparison of the analytical results for real seawater samples (study on a vertical distribution of Mo in the seawater column) with the results obtained by Zeeman-corrected electrothermal atomization atomic absorption spectrometry (Zeeman ETAAS). A good agreement between two used methods of molybdenum determination was obtained.  相似文献   

20.
Ma HB  Fang ZL  Wu JF  Liu SS 《Talanta》1999,49(1):125-133
A sequential injection system for the determination of mercury by vapor generation atomic absorption spectrometry (VGAAS) using tetrahydoborate reductant was developed, characterized by prevention of sample and reagent mixing in the holding coil using small air segments and initiation of the vapor generation in a flow-through gas-liquid separator. Extremely small volumes of reductant of 15-30 mul (0.2-1.0% NaBH(4)) and sample acidity as low as 0.05 mol l(-1) HCl were sufficient for achieving performance similar to flow injection (FI) VGAAS systems. A sample throughput of 90 h(-1) was achieved with 400 mul samples with a precision of 2.0% RSD at 10 mug l(-1)Hg, and a detection limit of 0.1 mug l(-1) (3sigma). Reagent consumption was reduced by a factor of 25 in comparison to the FI-VGAAS system. Good agreement with the certified value was obtained for the determination of mercury in seawater in a standard reference sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号