首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The adsorption of NO on single gold atoms and Au2 dimers deposited on regular O2− sites and neutral oxygen vacancies (Fs sites) of the MgO(1 0 0) surface have been studied by means of DFT calculations. For Au1/MgO the adsorption of NO is stronger when the Au atom is supported on an anionic site than when it is on a Fs site, with adsorption binding energies of 1.1 and 0.5 eV, respectively. In the first case the spin density is mainly concentrated on the metal atom and protruding from the surface. In such a way, an active site against radicals such as NO is generated. On the Fs site, the presence of the vacancy delocalizes the spin into the substrate, weakening its coupling with NO. For Au2/MgO, as this system has a closed-shell configuration, the NO molecules bonds weakly with Au2. Regarding the N–O stretching frequencies, a very strong shift of 340–400 cm−1 to lower frequencies is observed for Au1/MgO in comparison with free NO.  相似文献   

2.
Mo, Au and their coadsorbed layers were produced on nearly stoichiometric and oxygen-deficient titania surfaces by physical vapor deposition (PVD) and characterized by low energy ion scattering (LEIS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and scanning tunnelling microscopy (STM). The behavior of Au/Mo bimetallic layers was studied at different relative metal coverages and sample temperatures.

STM data indicated clearly that the deposition of Au on the Mo-covered stoichiometric TiO2(1 1 0) surface results in an enhanced dispersion of gold at 300 K. The mean size of the Au nanoparticles formed at 300 K on the Mo-covered TiO2(1 1 0) was significantly less than on the Mo-free titania surface (2 ± 0.5 nm and 4 ± 1 nm, respectively). Interestingly, the deposition of Mo at 300 K onto the stoichiometric TiO2(1 1 0) surface covered by Au nanoparticles of 3–4 nm (0.5 ML) also resulted in an increased dispersity of gold. The driving force for the enhanced wetting at 300 K is that the Au–Mo bond energy is larger than the Au–Au bond energy in 3D gold particles formed on stoichiometric titania. In contrast, 2D gold nanoparticles produced on ion-sputtered titania were not disrupted in the presence of Mo at 300 K, indicating a considerable kinetic hindrance for breaking of the strong Au-TiOx bond.

The annealing of the coadsorbed layer formed on a strongly reduced surface to 740 K did not cause a decrease in the wetting of titania surface by gold. The preserved dispersion of Au at higher temperatures is attributed to the presence of the oxygen-deficient sites of titania, which were retained through the reaction of molybdenum with the substrate. Our results suggest that using a Mo-load to titania, Au nanoparticles can be produced with high dispersion and high thermal stability, which offers the fabrication of an effective Au catalyst.  相似文献   


3.
The influence of deposited potassium on the oxidation and NO reactivity of a Co(0 0 0 1) surface was studied using X-ray photoelectron spectroscopy. The formation of surface CoO was observed when the clean Co(0 0 0 1) surface was exposed to O2 at 500 K. In contrast, the Co atoms on the K-deposited Co(0 0 0 1) surface remained at a lower oxidation state, CoOx (0 < x < 1). No adsorption or dissociation of NO occurred on the CoO/Co(0 0 0 1) surface at 320 K, whereas a NO2 species formed on the oxidized K/Co(0 0 0 1) surface. This species is considered to be an intermediate in NO decomposition. It was concluded that the role of potassium was (i) to form the NO2 intermediate, and (ii) to keep the Co surface partially oxidized (CoOx) as the active site for the dissociation of the NO2 species.  相似文献   

4.
Influence of silver doping on the photocatalytic activity of titania films   总被引:13,自引:0,他引:13  
By means of X-ray diffraction, BET nitrogen adsorption, UV-Vis-NIR transmission spectroscopy, transmission electron microscope, scanning electron microscope, X-ray photoelectron spectroscopy and photodegradation of methylene blue, effects of Ag doping on the microstructure and photocatalytic activity of TiO2 films prepared by sol–gel method were studied. It is found that with a suitable amount (2–4 mol%), the Ag dopant increases the photocatalytic activity of TiO2 films. The mechanism can be attributed to that (1) anatase grain sizes decrease with Ag doping and the specific surface areas of doped TiO2 films increase, the charge transfer in TiO2 films is promoted; (2) by enhancing the electron–hole pairs separation and inhibiting their recombination, the Ag dopant enhances the charge pair separation efficiency for doped TiO2 films.  相似文献   

5.
Here we present the characteristic signatures in X-ray absorption and photoemission spectroscopy for molecular damage in adsorbed monolayers of bi-isonicotinic acid on a rutile TiO2(1 1 0) surface. Bi-isonicotinic acid is the anchor ligand through which many important inorganic complexes are bound to the surface of TiO2 in dye-sensitized solar cells. The nature of the damage caused by excessive heating of the adsorbed monolayer is consistent with splitting the molecule into two adsorbed isonicotinic acid molecular fragments. The effect on the lowest unoccupied molecular orbitals (involved in electron transfer in the molecule) can be understood in terms of the adsorption geometry of the reaction products and their nearest neighbor interactions.  相似文献   

6.
周诗文  彭平  陈文钦  庾名槐  郭惠  袁珍 《物理学报》2019,68(3):37101-037101
采用基于密度泛函理论加U的计算方法,研究了Ce和O空位单(共)掺杂锐钛矿相TiO_2的电子结构和光吸收性质.计算结果表明,Ce和O空位共掺杂TiO_2的带隙中出现了杂质能级,且带隙窄化为2.67 eV,明显比纯TiO_2和Ce,O空位单掺杂TiO_2的要小,因而可提高TiO_2对可见光的响应能力,使TiO_2的光吸收范围增加.光吸收谱显示,掺杂后TiO_2的光吸收边发生了显著红移;在400.0—677.1 nm的可见光区,共掺杂体系的光吸收强度显著高于纯TiO_2和Ce单掺杂TiO_2,而略低于O空位单掺杂TiO_2.此外,Ce掺杂TiO_2中引入O空位后,TiO_2的导带边从-0.27 eV变化为-0.32 eV,这表明TiO_2的导带边的还原能力得到了加强.计算结果为Ce和O空位共掺杂TiO_2在可见光光解水方面的进一步研究提供了有力的理论依据.  相似文献   

7.
S-doped TiO2 (S-TiO2) photocatalyst was synthesized by sol–gel method with tetrabutyl titanate and thiourea as precursor. S-TiO2 was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis absorption spectroscopy, transmission electron microscopy (TEM) and the photocatalytic activity was evaluated by 1-naphthol-5-sulfonic acid (L-acid) under UV, visible light and solar light radiation. The results showed that doped S could improve photoabsorption property of TiO2 in the visible region, leading the increase in the photocatalytical activity of TiO2.

The average particle size of the S-TiO2 photocatalyst is about 10 nm. The S-TiO2-4 photocatalyst contains 100% anatase crystalline phase of TiO2. In the S-TiO2-4 photocatalyst, S does not exist independently, but is incorporated into the crystal lattice of TiO2. In the inner crystal lattice of the S-TiO2-4 photocatalyst, S as S2− replaces O in TiO2, while on the surface of crystal lattice, S exists as S4+ and S6+.

The photocatalytical activity of S-TiO2-4 photocatalyst for the photodegradation of L-acid is better than that of pure TiO2. Under the same conditions, the photodegradation efficiency of L-acid for the S-TiO2-4 photocatalyst and the solar light irradiation is 85.1%, while it is only 26.4% for pure TiO2. In addition, the final products of the photocatalysis of L-acid using the S-TiO2-4 photocatalyst are not organic compounds with low molecular weight, but the inorganic compounds.  相似文献   


8.
Polycrystalline (1−x)Ta2O5xTiO2 thin films were formed on Si by metalorganic decomposition (MOD) and annealed at various temperatures. As-deposited films were in the amorphous state and were completely transformed to crystalline after annealing above 600 °C. During crystallization, a thin interfacial SiO2 layer was formed at the (1−x)Ta2O5xTiO2/Si interface. Thin films with 0.92Ta2O5–0.08TiO2 composition exhibited superior insulating properties. The measured dielectric constant and dissipation factor at 1 MHz were 9 and 0.015, respectively, for films annealed at 900 °C. The interface trap density was 2.5×1011 cm−2 eV−1, and flatband voltage was −0.38 V. A charge storage density of 22.8 fC/μm2 was obtained at an applied electric field of 3 MV/cm. The leakage current density was lower than 4×10−9 A/cm2 up to an applied electric field of 6 MV/cm.  相似文献   

9.
Michael A Henderson   《Surface science》1998,400(1-3):203-219
The reaction of CO2 and H2O to form bicarbonate (HCO3) was examined on the nearly perfect and vacuum annealed surfaces of TiO2(110) with temperature programmed desorption (TPD), static secondary ion mass spectrometry (SSIMS) and high resolution electron energy loss spectrometry (HREELS). The vacuum annealed TiO2(110) surface possesses oxygen vacancy sites that are manifested in electronic EELS by a loss feature at 0.75 V. These oxygen vacancy sites bind CO2 only slightly more strongly (TPD peak at 166 K) than do the five-coordinated Ti4+ sites (TPD peak at 137 K) typical of the nearly perfect TiO2(110) surface. Vibrational HREELS indicates that CO2 is linearly bound at the latter sites with a νa(OCO) frequency similar to the gas phase value. In contrast, oxygen vacancies dissociate H2O to bridging OH groups which recombine to liberate H2O in TPD at 490 K. No evidence for a reaction between CO2 and H2O is detected on the nearly perfect surface. In sequentially dosed experiments on the vacuum annealed surface at 110 K, CO2 adsorption is blocked by the presence of preadsorbed H2O, adsorbed CO2 is displaced by postdosed H2O, and there is little or no evidence for bicarbonate formation in either case. However, when CO2 and H2O are simultaneously dosed, a new CO2 TPD state is observed at 213 K, and the 166 K state associated with CO2 at the vacancies is absent. SSIMS was used to tentatively assign the 213 K CO2 TPD state to a bicarbonate species. The 213 K CO2 TPD state is not formed if the vacancy sites are filled with OH groups prior to simultaneous CO2+H2O exposure. Sticking coefficient measurements suggest that CO2 adsorption at 110 K is precursor-mediated, as is known to be the case for H2O adsorption on TiO2(110). A model explaining the circumstances under which the proposed bicarbonate species is formed involves the surface catalyzed conversion of a precursor-bound H2O–CO2 van der Waals complex to carbonic acid, which then reacts at unoccupied oxygen vacancies to generate bicarbonate, but falls apart to CO2 and H2O in the absence of these sites. This model is consistent with the conditions under which bicarbonate is formed on powdered TiO2, and is similar to the mechanism by which water catalyzes carbonic acid formation in aqueous solution.  相似文献   

10.
A complete inspection of the capabilities of reflectance anisotropy spectroscopy (RAS) in studying the adsorption of molecules or atoms on the Si(0 0 1)-(2 × 1) surface is presented. First, a direct comparison between RA spectra recorded on the clean Si(0 0 1)-(2 × 1) and the corresponding topography of the surface obtained using scanning tunneling microscopy (STM) allows us to quantify the mixing of the two domains that are present on the surface. Characteristic RA spectra recorded for oxygen, hydrogen, water, ethylene, benzene are compared to try to elucidate the origin of the optical structures. Quantitative and qualitative information can be obtained with RAS on the kinetics of adsorption, by monitoring the RA signal at a given energy versus the dose of adsorbate; two examples are presented: H2/Si(0 0 1) and C6H6/Si(0 0 1). Very different behaviours in the adsorption processes are observed, making of this technique a versatile tool for further investigations of kinetics.  相似文献   

11.
Well-defined (101) and (001) surfaces of anatase TiO2 were studied for the first time by secondary-electron imaging and low-energy electron diffraction. Initially, both surfaces show a crystalline structure corresponding to the bulk anatase phase, buried under an atomically thin contamination layer. After mild sputtering with 500 eV Ne+ ions, we have observed a surface phase transition from tetragonal anatase to face-centered cubic titanium monoxide TiO. Subsequent annealing at 900 K restores the (1×1) anatase structure at the (101) surface. On the (001) surface, however, a (1×4) reconstruction appears. The unreconstructed structure can be recovered by exposing the surface to oxygen. These observations demonstrate the stability of the anatase surfaces and illustrate the feasibility of preparing and investigating clean surfaces of this technological important form of TiO2.  相似文献   

12.
The adsorption of oxygen on a polycrystalline zirconium surface at room temperature has been studied by metastable de-excitation spectroscopy (MDS) in conjunction with UPS and AES. From the analysis of the measured spectra, we have shown the following. (1) At the initial stage of oxygen adsorption (exposure <1.2 L), the surface density of states (SDOS) of zirconium changes little at around the Fermi level (EF), while it decreases appreciably at 1–2 eV below EF (EB=1–2 eV) by oxygen adsorption. (2) The SDOS at EB=0–2 eV decreases with increasing oxygen exposure at >1.2 L and disappears at >8 L. (3) The oxygen 2p states (EB=5–8 eV) are localized at the subsurface region at oxygen exposure 0–2 L. (4) The ZrO2 phase appears at the outermost zirconium surface at around 2 L, then grows with increasing exposure, and finally dominates at >8 L. It is suggested that two different phases (ZrO2 phase and that in which oxygen occupies subsurface sites) coexist at the outermost surface at 2–8 L.  相似文献   

13.
Oxygen tracer diffusion (D*) and surface exchange rate constant (k*) have been measured, using isotopic exchange and depth profiling by secondary ion mass spectrometry (SIMS), in La1−xSrxFe0.8Cr0.2O3−δ (x=0.2, 0.4 and 0.6). Measurements were made as a function of temperature (700–1000 °C) and oxygen partial pressure (0.21–10−21 atm) in dry oxygen, water vapour and water vapour/hydrogen/nitrogen mixtures. At high oxygen activity, D* was found to increase with increasing temperature and Sr content. The activation energies for D* in air are 2.13 eV (x=0.2), 1.53 eV (x=0.4) and 1.21 eV (x=0.6). As the oxygen activity decreases, D* increases as expected qualitatively from the increase in oxygen vacancy concentration. Under strongly reducing conditions, the measured values of D* at 1000 °C range from 10−8 cm2 s−1 for x=0.2 to 10−7 cm2 s−1 for x=0.4 and 0.6. The activation energies determined at constant H2O/H2 ratio are 1.21 eV (x=0.2), 1.59 eV (x=0.4) and 0.82 eV (x=0.6).

The surface exchange rate constant of oxygen for the H2O molecule is similar in magnitude to that for the O2 molecule and both increase with increasing Sr concentration.  相似文献   


14.
The adsorption of oxalate, malonate and succinate on anatase, rutile and lepidocrocite, was studied by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) at aqueous concentrations of 200 μM between pH 9 and 3. Clear spectral differences between the aqueous species and the surface adsorbed species for all three dicarboxylates are taken as strong evidence for inner-sphere adsorption. The characteristically different spectra on each oxide reveal surface specific interactions and could be used as a diagnostic tool, e.g., to probe the relative abundance of anatase and rutile on the surface of TiO2 samples. Spectral changes between pH 7.0 and 3.0 show that two to three different surface complexes of oxalate and one to three surface complexes of malonate and succinate are formed on each of the three surfaces. While the exact structures of each complex can currently not be derived, important differences between the dicarboxylates can be identified. Only adsorbed oxalate exhibits two strong bands above 1670 cm−1, as expected for a five- (bidentate chelating) or six-membered (bidentate bridging) ring structure with one oxygen of each carboxylic group coordinated to surface sites and two CO double bonds pointing away from the surface. The absence of clear CO double bond vibrations above 1620 cm−1 show that malonate and succinate adsorb differently, with one or both of the carboxylic groups independently forming monodentate hydrogen bonded, bidentate chelating (four-ring) or bidentate bridging (five-ring) structures. Oxalate is the only one of the three dicarboxylates that formed additional surface complexes at low pH on rutile and anatase and lead to rapid dissolution of lepidocrocite below pH 5.0.  相似文献   

15.
The technique of polarity reversal of the external electric extraction field (strength: 102 V/cm) was applied to study the relaxation of the thermal ion emission from the KCl(0 0 1) single crystal surface. Transient currents of the K+ and K2Cl+ ions upon switching from the emission suppression to the ion extraction mode were recorded as a function of the evaporation time, the temperature, and the time of field reversal. The temperature dependence of the time constants of the K+ ions obtained from the exponential decreases of the emission currents to their steady-state emission resulted as logτh(s)=−(13.39±0.56)+(12.42±0.49)103/T in a high temperature interval of 826–930 K after a prolonged heating period and as logτl(s)=−(20.65±1.04)+(16.77±0.81)103/T in a low temperature interval of 750–801 K at the initial stage of evaporation, with corresponding activation energies of Eh(K+)=2.47±0.14 eV and El(K+)=3.32±0.16 eV, respectively. The transient currents can be interpreted by a partial adsorption of the suppressed ion currents at the kinks of the surface steps. The differences in the high- and low-temperature runs may be attributed to a strong coarsening of the surface at higher temperatures, which occurs as a bunching of monosteps to macrosteps and/or to an enrichment and segregation of divalent impurities at the surface. The transient behavior of the molecular K2Cl+ ions seems to be strongly correlated with that of the K+ ions. This correlation is possibly caused by changes of the strength or the sign of the local electrical field connected with the excess charge at the kinks.  相似文献   

16.
Adsorption and decomposition of triethylindium (TEI: (C2H5)3In) on a GaP(0 0 1)-(2×1) surface have been studied by low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). It is found from the TPD result that ethyl radical and ethylene are evolved at about 300–400 and 450–550 K, respectively, as decomposition products of TEI on the surface. This result is quite different from that on the GaP(0 0 1)-(2×4) surface. The activation energy of desorption of ethyl radical is estimated to be about 93 kJ/mol. It is suggested that TEI is adsorbed molecularly on the surface at 100 K and that some of TEI molecules are dissociated into C2H5 to form P–C2H5 bonds at 300 K. The vibration modes related to ethyl group are decreased in intensity at about 300–400 and 450–550 K, which is consistent with the TPD result. The TEI molecules (including mono- and di-ethylindium) are not evolved from the surface. Based on the TPD and HREELS results, the decomposition mechanism of TEI on the GaP(0 0 1)-(2×1) surface is discussed and compared with that on the (2×4) surface.  相似文献   

17.
Zn1−xMnxS epilayers were grown on GaAs (1 0 0) substrates by hot-wall epitaxy. X-ray diffraction (XRD) patterns revealed that all the epilayers have a zincblende structure. The optical properties were investigated using spectroscopic ellipsometry at 300 K from 3.0 to 8.5 eV. The obtained data were analyzed for determining the critical points of pseudodielectric function spectra, (E) = 1(E) + i2(E), such as E0, E0 + Δ0, and E1, and three E2 (Σ, Δ, Γ) structures at a lower Mn composition range. These critical points were determined by analytical line-shapes fitted to numerically calculated derivatives of their pseudodielectric functions. The observation of new peaks, as well as the shifting and broadening of the critical points of Zn1−xMnxS epilayers, were investigated as a function of Mn composition by ellipsometric measurements for the first time. The characteristics of the peaks changed with increasing Mn composition. In particular, four new peaks were observed between 4.0 and 8.0 eV for Zn1−xMnxS epilayers, and their characteristics were investigated in this study.  相似文献   

18.
By undertaking AC electrochemical impedance experiments on yttria stabilised zirconia electrolytes with polished Y1Ba2Cu3O7−x electrodes, the activation energy for oxygen ion transport within the bulk of Y1Ba2Cu3O7−x, in air, over the temperature range 823 K–1043 K, was determined to be 1.50 ± 0.05 eV. At 1000 K the oxygen ionic conductivity was calculated to be around one order of magnitude lower than that in yttria stabilised zirconia. Typical calculated values were σ=5×10−5 (ω cm)−1 and 6×10−3 (ω cm)−1 at the respective temperatures 823 K and 1043 K. By employing a similar cell but with Y1Ba2Cu3O7−x paste electrodes, oxygen transfer between the Y1Ba2Cu3O7−x and the electrolyte was found to occur via a surface diffusional processes. Over the temperature range 873 K–1098 K, in air, the activation energy for in-diffusion at the surface was found to be 1.4±0.1 eV and that for out-diffusion at the surface to be 1.76±0.05 eV.  相似文献   

19.
We have investigated the growth mode and surface morphology of CaF2 film on Si(1 1 1)7×7 substrate by reflection high-energy electron diffraction (RHEED) using very weak electron beam and atomic force microscopy (AFM). It was found by RHEED intensity oscillation measurements and AFM observations that three-dimensional (3D) islands grow at RT; however, rather flat surface appears with two-dimensional (2D) islands around 300 °C. Especially, at high temperature of 700 °C, characteristic equilateral triangular terraces (or islands) with flat and wide shape grow with the tops directed toward [1 1 −2] of substrate Si(1 1 1). On the other hand, the desorption process of the CaF2 film due to electron stimulated desorption (ESD) was also examined. It was found that the ESD process at 300 °C forms characteristic equilateral triangular craters on the film surface with the tops (or corners) directed toward [−1 −1 2] of substrate Si(1 1 1), provided that the film was grown at 700 °C.  相似文献   

20.
To evaluate the interactions between the atoms of Au, Ag and Cu and clean Si(1 1 1) surface, two types of silicon clusters Si4H7 and Si16H20 together with their metal complexes were studied by using hybrid (U)B3LYP density functional theory method. Optimized geometries and energies on different adsorption sites indicate that: (1) the binding energies at different adsorption sites are large (ranging from 1.2 to 2.6 eV depend on the metal atoms and adsorption sites), suggesting a strong interaction between metal atom and silicon surface; (2) the most favorable adsorption site is the on top (T) site. Mulliken population analysis indicated that in the system of on top (T) site, a covalent bond is formed between metal atom and dangling bond of surface Si atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号